Tasks 01-05 - Logarithms & Substitution

Advanced Algebraic Tools

Problem 1: Substitution for Factorization

Use substitution to factor the following expressions completely:

  1. \(x^4 + 5x^2 + 6\)

  2. \(4x^4 - 13x^2 + 9\)

  3. \(x^6 - 9x^3 + 8\)

  4. \((x^2 + 3x)^2 - 2(x^2 + 3x) - 24\)

  5. \(16x^4 - 8x^2 + 1\)

  1. \(x^4 + 5x^2 + 6\)
    • Let \(u = x^2\): \(u^2 + 5u + 6 = (u + 2)(u + 3)\)
    • Substitute back: \((x^2 + 2)(x^2 + 3)\)
  2. \(4x^4 - 13x^2 + 9\)
    • Let \(u = x^2\): \(4u^2 - 13u + 9 = (4u - 9)(u - 1)\)
    • Substitute back: \((4x^2 - 9)(x^2 - 1) = (2x + 3)(2x - 3)(x + 1)(x - 1)\)
  3. \(x^6 - 9x^3 + 8\)
    • Let \(u = x^3\): \(u^2 - 9u + 8 = (u - 1)(u - 8)\)
    • Substitute back: \((x^3 - 1)(x^3 - 8)\)
    • Factor further: \((x - 1)(x^2 + x + 1)(x - 2)(x^2 + 2x + 4)\)
  4. \((x^2 + 3x)^2 - 2(x^2 + 3x) - 24\)
    • Let \(u = x^2 + 3x\): \(u^2 - 2u - 24 = (u - 6)(u + 4)\)
    • Substitute back: \((x^2 + 3x - 6)(x^2 + 3x + 4)\)
  5. \(16x^4 - 8x^2 + 1\)
    • Let \(u = x^2\): \(16u^2 - 8u + 1 = (4u - 1)^2\)
    • Substitute back: \((4x^2 - 1)^2 = [(2x + 1)(2x - 1)]^2 = (2x + 1)^2(2x - 1)^2\)

Problem 2: Logarithm Fundamentals

Evaluate the following without a calculator:

  1. \(\log_2(64)\)

  2. \(\log_3(\frac{1}{27})\)

  3. \(\log_5(125)\)

  4. \(\log_{10}(0.001)\)

  5. \(\log_4(8)\) (Hint: Express 8 as a power of 2, and 4 as a power of 2)

  6. \(\ln(e^3)\)

  1. \(\log_2(64) = \log_2(2^6) = 6\)

  2. \(\log_3(\frac{1}{27}) = \log_3(3^{-3}) = -3\)

  3. \(\log_5(125) = \log_5(5^3) = 3\)

  4. \(\log_{10}(0.001) = \log_{10}(10^{-3}) = -3\)

  5. \(\log_4(8)\): Since \(4 = 2^2\) and \(8 = 2^3\)

    • Let \(\log_4(8) = x\), then \(4^x = 8\)
    • \((2^2)^x = 2^3\)
    • \(2^{2x} = 2^3\)
    • \(2x = 3\), so \(x = \frac{3}{2}\)
  6. \(\ln(e^3) = 3\)

Problem 3: Logarithm Laws

Simplify the following expressions using logarithm laws:

  1. \(\log_2(16) + \log_2(8) - \log_2(4)\)

  2. \(\log(50) + \log(20) - \log(100)\)

  3. \(3\log_5(x) - \log_5(x^2) + \log_5(25)\)

  4. \(\log_3(81) - 2\log_3(9) + \log_3(27)\)

  5. Express as a single logarithm: \(\frac{1}{2}\ln(x) + 3\ln(y) - \ln(z)\)

  1. \(\log_2(16) + \log_2(8) - \log_2(4)\)
    • Direct: \(4 + 3 - 2 = 5\)
    • Or: \(\log_2(\frac{16 \times 8}{4}) = \log_2(32) = 5\)
  2. \(\log(50) + \log(20) - \log(100)\)
    • \(= \log(\frac{50 \times 20}{100}) = \log(10) = 1\)
  3. \(3\log_5(x) - \log_5(x^2) + \log_5(25)\)
    • \(= \log_5(x^3) - \log_5(x^2) + \log_5(25)\)
    • \(= \log_5(\frac{x^3 \times 25}{x^2}) = \log_5(25x) = \log_5(25) + \log_5(x)\)
    • \(= 2 + \log_5(x)\)
  4. \(\log_3(81) - 2\log_3(9) + \log_3(27)\)
    • \(= 4 - 2(2) + 3 = 4 - 4 + 3 = 3\)
  5. \(\frac{1}{2}\ln(x) + 3\ln(y) - \ln(z)\)
    • \(= \ln(x^{1/2}) + \ln(y^3) - \ln(z)\)
    • \(= \ln(\frac{\sqrt{x} \cdot y^3}{z})\)

Problem 4: Solving Logarithmic Equations

Solve the following equations:

  1. \(\log_3(x + 5) = 2\)

  2. \(\log(2x - 1) - \log(x + 2) = 0\)

  3. \(2^{\log_2(x)} = 8\)

  4. \(\log_x(49) = 2\)

  1. \(\log_3(x + 5) = 2\)
    • \(x + 5 = 3^2 = 9\)
    • \(x = 4\)
  2. \(\log(2x - 1) - \log(x + 2) = 0\)
    • \(\log(\frac{2x - 1}{x + 2}) = 0\)
    • \(\frac{2x - 1}{x + 2} = 10^0 = 1\)
    • \(2x - 1 = x + 2\)
    • \(x = 3\)
  3. \(2^{\log_2(x)} = 8\)
    • By definition: \(2^{\log_2(x)} = x\)
    • So \(x = 8\)
  4. \(\log_x(49) = 2\)
    • \(x^2 = 49\)
    • \(x = 7\) (x must be positive and ≠ 1)

Problem 5: Binomial

  1. Expand completely: \((2x - 3)^4\)

  2. Expand completely: \((3x + 1)^6\)

  1. \((2x - 3)^4\)

    • Coefficients: 1, 4, 6, 4, 1
    • \(= (2x)^4 + 4(2x)^3(-3) + 6(2x)^2(-3)^2 + 4(2x)(-3)^3 + (-3)^4\)
    • \(= 16x^4 - 96x^3 + 216x^2 - 216x + 81\)
  2. \((3x + 1)^6\) Using the binomial theorem: \((a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k\)

    With \(a = 3x\), \(b = 1\), and \(n = 6\):

    • \(k = 0\): \(\binom{6}{0}(3x)^6(1)^0 = 1 \times 729x^6 = 729x^6\)
    • \(k = 1\): \(\binom{6}{1}(3x)^5(1)^1 = 6 \times 243x^5 = 1458x^5\)
    • \(k = 2\): \(\binom{6}{2}(3x)^4(1)^2 = 15 \times 81x^4 = 1215x^4\)
    • \(k = 3\): \(\binom{6}{3}(3x)^3(1)^3 = 20 \times 27x^3 = 540x^3\)
    • \(k = 4\): \(\binom{6}{4}(3x)^2(1)^4 = 15 \times 9x^2 = 135x^2\)
    • \(k = 5\): \(\binom{6}{5}(3x)^1(1)^5 = 6 \times 3x = 18x\)
    • \(k = 6\): \(\binom{6}{6}(3x)^0(1)^6 = 1 \times 1 = 1\)

    \(= 729x^6 + 1458x^5 + 1215x^4 + 540x^3 + 135x^2 + 18x + 1\)

Problem 6: Logarithmic Application

  1. An investment grows from €5,000 to €8,000 in 6 years with continuous compounding. Find the interest rate.
  1. Investment growth:
    • \(8000 = 5000e^{6r}\)
    • \(1.6 = e^{6r}\)
    • \(\ln(1.6) = 6r\)
    • \(r = \frac{\ln(1.6)}{6} = \frac{0.470}{6} = 0.0783\)
    • Interest rate: 7.83%