Tasks 01-03 - Core Algebra & Exponents

Building Your Algebraic Foundation

Problem 1: Order of Operations

Evaluate the following expressions. Show each step clearly.

  1. \(5 + 3^2 \times 4 - 18 \div 3\)

  2. \(2 \times [6 + 3 \times (4^2 - 14)]\)

  3. \(\frac{3^3 - 2 \times 4}{5 - 2}\)

  4. \((2 + 3)^3 - 5 \times (12 - 2 \times 4)\)

  5. \(\frac{4^2 + 2 \times 3}{2} - 3 \times (5 - 3)^2\)

  1. \(5 + 3^2 \times 4 - 18 \div 3\)
    • \(= 5 + 9 \times 4 - 18 \div 3\)
    • \(= 5 + 36 - 6\)
    • \(= 35\)
  2. \(2 \times [6 + 3 \times (4^2 - 14)]\)
    • \(= 2 \times [6 + 3 \times (16 - 14)]\)
    • \(= 2 \times [6 + 3 \times 2]\)
    • \(= 2 \times [6 + 6]\)
    • \(= 2 \times 12 = 24\)
  3. \(\frac{3^3 - 2 \times 4}{5 - 2}\)
    • \(= \frac{27 - 8}{3}\)
    • \(= \frac{19}{3}\)
  4. \((2 + 3)^3 - 5 \times (12 - 2 \times 4)\)
    • \(= 5^3 - 5 \times (12 - 8)\)
    • \(= 125 - 5 \times 4\)
    • \(= 125 - 20 = 105\)
  5. \(\frac{4^2 + 2 \times 3}{2} - 3 \times (5 - 3)^2\)
    • \(= \frac{16 + 6}{2} - 3 \times 2^2\)
    • \(= \frac{22}{2} - 3 \times 4\)
    • \(= 11 - 12 = -1\)

Problem 2: Exponent Laws

Simplify the following expressions completely. Express answers with positive exponents only.

  1. \((x^3)^2 \cdot x^{-4} \cdot x\)

  2. \(\frac{(2a^3b^2)^3}{8a^5b^4}\)

  3. \(\left(\frac{3x^2y}{z^2}\right)^2 \cdot \frac{z^3}{9xy^2}\)

  4. \((5^3)^2 \cdot 5^{-4} \div 5^2\)

  5. \(\frac{(m^2n^3)^2 \cdot m^{-3}n}{m^{-1}n^4}\)

  6. \(\left(\frac{2x^{-2}y^3}{z^{-1}}\right)^{-2}\)

  1. \((x^3)^2 \cdot x^{-4} \cdot x\)
    • \(= x^6 \cdot x^{-4} \cdot x^1\)
    • \(= x^{6-4+1} = x^3\)
  2. \(\frac{(2a^3b^2)^3}{8a^5b^4}\)
    • \(= \frac{8a^9b^6}{8a^5b^4}\)
    • \(= a^{9-5}b^{6-4}\)
    • \(= a^4b^2\)
  3. \(\left(\frac{3x^2y}{z^2}\right)^2 \cdot \frac{z^3}{9xy^2}\)
    • \(= \frac{9x^4y^2}{z^4} \cdot \frac{z^3}{9xy^2}\)
    • \(= \frac{9x^4y^2 \cdot z^3}{z^4 \cdot 9xy^2}\)
    • \(= \frac{x^3}{z}\)
  4. \((5^3)^2 \cdot 5^{-4} \div 5^2\)
    • \(= 5^6 \cdot 5^{-4} \cdot 5^{-2}\)
    • \(= 5^{6-4-2} = 5^0 = 1\)
  5. \(\frac{(m^2n^3)^2 \cdot m^{-3}n}{m^{-1}n^4}\)
    • \(= \frac{m^4n^6 \cdot m^{-3}n}{m^{-1}n^4}\)
    • \(= \frac{m^1n^7}{m^{-1}n^4}\)
    • \(= m^{1-(-1)}n^{7-4} = m^2n^3\)
  6. \(\left(\frac{2x^{-2}y^3}{z^{-1}}\right)^{-2}\)
    • \(= \left(\frac{2y^3z}{x^2}\right)^{-2}\)
    • \(= \frac{x^4}{4y^6z^2}\)

Problem 3: Scientific Notation

Part A: Conversions

Convert to scientific notation:

  1. 456,000,000
  2. 0.00000789
  3. 23.45 × 10^5

Convert to standard form:

  1. 3.67 × 10^8
  2. 9.2 × 10^{-5}

Part B: Calculations

Perform the following calculations and express answers in scientific notation:

  1. \((2.5 \times 10^6) \times (3.2 \times 10^{-3})\)

  2. \(\frac{9.6 \times 10^8}{3.2 \times 10^5}\)

  3. \((4.0 \times 10^4)^2\)

  4. \((3.6 \times 10^9) + (2.4 \times 10^8)\)

Part A:

  1. \(4.56 \times 10^8\)
  2. \(7.89 \times 10^{-6}\)
  3. \(2.345 \times 10^6\)
  4. 367,000,000
  5. 0.000092

Part B:

  1. \((2.5 \times 10^6) \times (3.2 \times 10^{-3})\)
    • \(= 8.0 \times 10^3\)
  2. \(\frac{9.6 \times 10^8}{3.2 \times 10^5}\)
    • \(= 3.0 \times 10^3\)
  3. \((4.0 \times 10^4)^2\)
    • \(= 16 \times 10^8 = 1.6 \times 10^9\)
  4. \((3.6 \times 10^9) + (2.4 \times 10^8)\)
    • \(= (36 \times 10^8) + (2.4 \times 10^8)\)
    • \(= 38.4 \times 10^8 = 3.84 \times 10^9\)

Problem 4: Absolute Value

Solve the following equations and inequalities. Express solutions using set notation or interval notation as appropriate.

  1. \(|3x - 6| = 9\)

  2. \(|x - 4| < 3\)

  3. \(|2x + 8| \geq 6\)

  4. \(3|x - 2| - 4 = 5\)

  1. \(|3x - 6| = 9\)
    • Case 1: \(3x - 6 = 9 \Rightarrow x = 5\)
    • Case 2: \(3x - 6 = -9 \Rightarrow x = -1\)
    • Solution: \(x \in \{-1, 5\}\)
  2. \(|x - 4| < 3\)
    • \(-3 < x - 4 < 3\)
    • \(1 < x < 7\)
    • Solution: \((1, 7)\)
  3. \(|2x + 8| \geq 6\)
    • \(2x + 8 \leq -6\) OR \(2x + 8 \geq 6\)
    • \(x \leq -7\) OR \(x \geq -1\)
    • Solution: \((-\infty, -7] \cup [-1, \infty)\)
  4. \(3|x - 2| - 4 = 5\)
    • \(3|x - 2| = 9\)
    • \(|x - 2| = 3\)
    • \(x - 2 = 3\) OR \(x - 2 = -3\)
    • Solution: \(x \in \{-1, 5\}\)

Problem 5: Basic Factorization

Factor the following expressions completely:

  1. \(15x^3 - 10x^2 + 5x\)

  2. \(x^2 - 144\)

  3. \(49x^2 - 64y^2\)

  4. \(x^2 + 16x + 64\)

  5. \(9x^2 - 12x + 4\)

  6. \(8x^3 - 32x\)

  7. \(3x^2 - 75\)

  8. \(x^2 - 18x + 81\)

  1. \(15x^3 - 10x^2 + 5x\)
    • \(= 5x(3x^2 - 2x + 1)\)
  2. \(x^2 - 144\)
    • \(= (x + 12)(x - 12)\)
  3. \(49x^2 - 64y^2\)
    • \(= (7x + 8y)(7x - 8y)\)
  4. \(x^2 + 16x + 64\)
    • \(= (x + 8)^2\)
  5. \(9x^2 - 12x + 4\)
    • \(= (3x - 2)^2\)
  6. \(8x^3 - 32x\)
    • \(= 8x(x^2 - 4)\)
    • \(= 8x(x + 2)(x - 2)\)
  7. \(3x^2 - 75\)
    • \(= 3(x^2 - 25)\)
    • \(= 3(x + 5)(x - 5)\)
  8. \(x^2 - 18x + 81\)
    • \(= (x - 9)^2\)

Problem 6: Mixed Practice

Solve or simplify as indicated:

  1. Simplify: \(\frac{(3x^2)^3 \cdot x^{-4}}{27x^2}\)

  2. Factor: \(25x^2 - 100\)

  3. Express \(0.0000567\) in scientific notation

  4. Evaluate: \(\frac{2^3 + 3 \times 2^2}{14 - 2 \times 3}\)

  5. Simplify: \((a^{-2}b^3)^{-2} \cdot (ab^{-1})^3\)

  1. \(\frac{(3x^2)^3 \cdot x^{-4}}{27x^2} = \frac{27x^6 \cdot x^{-4}}{27x^2} = \frac{27x^2}{27x^2} = 1\)

  2. \(25x^2 - 100 = 25(x^2 - 4) = 25(x + 2)(x - 2)\)

  3. \(5.67 \times 10^{-5}\)

  4. \(\frac{8 + 12}{8} = \frac{20}{8} = \frac{5}{2}\)

  5. \(a^4b^{-6} \cdot a^3b^{-3} = a^7b^{-9} = \frac{a^7}{b^9}\)