Course Cheatsheet
Section 01: Mathematical Foundations & Algebra
Number Systems
The hierarchy of number systems: \[\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{I} \subset \mathbb{R}\]
- \(\mathbb{N} = \{1, 2, 3, ...\}\) - Natural numbers
- \(\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}\) - Integers
- \(\mathbb{Q} = \{\frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0\}\) - Rational numbers
- \(\mathbb{I}\) - Irrational numbers (cannot be expressed as fractions)
- \(\mathbb{R}\) - Real numbers (all points on the number line)
Key Facts:
- Repeating decimals are rational: \(0.\overline{36} = \frac{36}{99} = \frac{4}{11}\)
- \(\pi\), \(\sqrt{2}\), \(\sqrt{7}\) are irrational
Set Theory Essentials
Set Notation:
- Roster: \(A = \{1, 2, 3, 4, 5\}\)
- Set-builder: \(B = \{x \in \mathbb{N} : x < 6\}\)
- Interval: \([0, 1] = \{x \in \mathbb{R} : 0 \leq x \leq 1\}\)
Set Operations:
- Union: \(A \cup B\) (elements in A or B)
- Intersection: \(A \cap B\) (elements in A and B)
- Difference: \(A \setminus B\) (elements in A but not in B)
Essential Symbols:
- \(\in\) (element of), \(\notin\) (not element of)
- \(\subset\) (subset), \(\subseteq\) (subset or equal)
- \(\forall\) (for all), \(\exists\) (there exists)
- \(\Rightarrow\) (implies), \(\Leftrightarrow\) (if and only if)
Commutative, Associative, and Distributive Laws
Commutative: \(a + b = b + a\), \(a \times b = b \times a\)
Associative: \((a + b) + c = a + (b + c)\)
Distributive: \(a(b + c) = ab + ac\)
Laws of Exponents
| Rule | Formula | Example |
|---|---|---|
| Product | \(a^m \cdot a^n = a^{m+n}\) | \(x^3 \cdot x^4 = x^7\) |
| Quotient | \(\frac{a^m}{a^n} = a^{m-n}\) | \(\frac{x^5}{x^2} = x^3\) |
| Power | \((a^m)^n = a^{mn}\) | \((x^3)^2 = x^6\) |
| Product Power | \((ab)^n = a^n b^n\) | \((2x)^3 = 8x^3\) |
| Quotient Power | \(\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}\) | \(\left(\frac{x}{3}\right)^2 = \frac{x^2}{9}\) |
Special Values:
- \(a^0 = 1\) (for \(a \neq 0\))
- \(a^1 = a\)
- \(a^{-n} = \frac{1}{a^n}\)
- \(a^{1/n} = \sqrt[n]{a}\)
Scientific Notation
Format: \(a \times 10^n\) where \(1 \leq |a| < 10\)
Examples:
- \(56,700,000 = 5.67 \times 10^7\)
- \(0.00000423 = 4.23 \times 10^{-6}\)
Operations:
- Multiply: \((3 \times 10^5) \times (2 \times 10^3) = 6 \times 10^8\)
- Divide: \(\frac{8.4 \times 10^7}{2.1 \times 10^4} = 4 \times 10^3\)
Absolute Value
Definition: \(|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}\)
Solving Equations: \(|ax + b| = c\) has solutions:
- \(ax + b = c\) and \(ax + b = -c\)
Inequalities:
- \(|x| < a\) means \(-a < x < a\)
- \(|x| > a\) means \(x < -a\) or \(x > a\)
Basic Factorization
Common Factor: Always check first!
- \(12x^3 - 18x^2 + 6x = 6x(2x^2 - 3x + 1)\)
Difference of Squares:
- \(a^2 - b^2 = (a + b)(a - b)\)
- \(x^2 - 9 = (x + 3)(x - 3)\)
Perfect Square Trinomials:
- \((a + b)^2 = a^2 + 2ab + b^2\)
- \((a - b)^2 = a^2 - 2ab + b^2\)
Advanced Factorization
AC Method: For \(ax^2 + bx + c\) when \(a \neq 1\)
- Find \(ac\)
- Find factors of \(ac\) that sum to \(b\)
- Rewrite middle term and group
- Factor by grouping
Example: \(6x^2 + 13x + 5\)
- \(ac = 30\), factors \((3,10)\) sum to \(13\)
- \(6x^2 + 3x + 10x + 5 = (3x + 5)(2x + 1)\)
Sum and Difference of Cubes:
- \(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\)
- \(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\)
Factoring by Grouping:
- Group terms with common factors
- Factor each group, then factor the common binomial
Roots and Radicals
Properties of Radicals:
| Property | Formula | Example |
|---|---|---|
| Product | \(\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}\) | \(\sqrt{12} = 2\sqrt{3}\) |
| Quotient | \(\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}\) | \(\sqrt{\frac{16}{4}} = 2\) |
| Power | \(\sqrt[n]{a^m} = a^{m/n}\) | \(\sqrt[3]{x^6} = x^2\) |
Sign Rules:
- Even roots: Always positive (\(\sqrt{9} = 3\), not \(-3\))
- Odd roots: Keep original sign (\(\sqrt[3]{-8} = -2\))
Rationalizing Denominators:
- Simple: \(\frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}\)
- Binomials: Use conjugates \((a + b\sqrt{c})(a - b\sqrt{c}) = a^2 - b^2c\)
Substitution for Factorization
Strategy: Replace repeated expressions with a simpler variable to reveal hidden patterns.
Common Patterns:
- Quadratic in form: \(x^4 - 13x^2 + 36\)
- Let \(u = x^2\): \(u^2 - 13u + 36 = (u-4)(u-9) = (x^2-4)(x^2-9)\)
- Repeated expressions: \((2x+1)^2 - 3(2x+1) - 10\)
- Let \(u = 2x+1\): \(u^2 - 3u - 10 = (u-5)(u+2) = (2x-4)(2x+3)\)
- Radical expressions: \(x + 6\sqrt{x} + 8\)
- Let \(u = \sqrt{x}\): \(u^2 + 6u + 8 = (u+2)(u+4) = (\sqrt{x}+2)(\sqrt{x}+4)\)
Steps:
- Identify the repeated pattern
- Substitute with a simple variable
- Factor the resulting expression
- Substitute back
- Check if further factoring is possible
Logarithms
Definition: If \(a^x = b\), then \(\log_a(b) = x\)
Basic Properties:
- \(\log_a(1) = 0\) (since \(a^0 = 1\))
- \(\log_a(a) = 1\) (since \(a^1 = a\))
- \(\log_a(a^x) = x\) (inverse operations)
- \(a^{\log_a(x)} = x\) (inverse operations)
Laws of Logarithms:
| Rule | Formula | Example |
|---|---|---|
| Product | \(\log_a(xy) = \log_a(x) + \log_a(y)\) | \(\log(20) = \log(4) + \log(5)\) |
| Quotient | \(\log_a(\frac{x}{y}) = \log_a(x) - \log_a(y)\) | \(\log(\frac{100}{4}) = \log(100) - \log(4)\) |
| Power | \(\log_a(x^n) = n\log_a(x)\) | \(\log(8^3) = 3\log(8)\) |
Change of Base Formula: \[\log_a(x) = \frac{\log_b(x)}{\log_b(a)} = \frac{\ln(x)}{\ln(a)} = \frac{\log(x)}{\log(a)}\]
Common Notations:
- \(\log(x)\) means \(\log_{10}(x)\) (common logarithm)
- \(\ln(x)\) means \(\log_e(x)\) (natural logarithm, \(e \approx 2.718\))
Solving Exponential Equations:
- If bases are the same: \(a^x = a^y \Rightarrow x = y\)
- If bases differ: Take logarithms of both sides
Pascal’s Triangle and Binomial Expansion
Pascal’s Triangle:
Row 0: 1
Row 1: 1 1
Row 2: 1 2 1
Row 3: 1 3 3 1
Row 4: 1 4 6 4 1
Row 5: 1 5 10 10 5 1
Pattern: Each number = sum of the two numbers above it
Common Expansions:
- \((a + b)^2 = a^2 + 2ab + b^2\)
- \((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\)
Binomial Theorem: \((a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k\) (later important!)
Compound Growth & Interest
Core Forms (from Sessions 01-03, 01-05, 01-06):
- (Discrete once per period) \(A = P(1 + r)^t\)
- \(P\) principal, \(r\) rate per period, \(t\) number of periods
- (Compounded \(n\) times per year) \(A = P\left(1 + \frac{r}{n}\right)^{nt}\)
- \(r\) nominal annual rate, \(n\) compounding frequency (12 monthly, 4 quarterly, etc.)
- (Continuous compounding) \(A = Pe^{rt}\)