Course Cheatsheet

Section 01: Mathematical Foundations & Algebra

Number Systems

The hierarchy of number systems:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{I} \subset \mathbb{R}$$

- $\mathbb{N} = \{1, 2, 3, ...\}$ Natural numbers

- $\mathbb{Q}=\left\{\frac{p}{q}:p,q\in\mathbb{Z},q\neq0\right\}$ Rational numbers \mathbb{I} Irrational numbers (cannot be expressed as fractions)
- ullet R Real numbers (all points on the number line)

Key Facts:

- Repeating decimals are rational: $0.\overline{36} = \frac{36}{99} = \frac{4}{11}$
- π , $\sqrt{2}$, $\sqrt{7}$ are irrational

Set Theory Essentials

Set Notation:

- Roster: $A = \{1, 2, 3, 4, 5\}$
- Set-builder: $B = \{x \in \mathbb{N} : x < 6\}$
- Interval: $[0,1] = \{x \in \mathbb{R} : 0 \le x \le 1\}$

Set Operations:

- Union: $A \cup B$ (elements in A or B)
- Intersection: $A \cap B$ (elements in A and B)
- Difference: $A \setminus B$ (elements in A but not in B)

Essential Symbols:

- \in (element of), \notin (not element of)
- \subset (subset), \subset (subset or equal)
- \forall (for all), \exists (there exists)
- \Rightarrow (implies), \Leftrightarrow (if and only if)

Commutative, Associative, and Distributive Laws

Commutative: a + b = b + a, $a \times b = b \times a$

Associative: (a + b) + c = a + (b + c)

Distributive: a(b+c) = ab + ac

Laws of Exponents

Rule	Formula	Example
Product	$a^m \cdot a^n = a^{m+n}$	$x^3 \cdot x^4 = x^7$
Quotient	$\frac{a^m}{a^n} = a^{m-n}$	$\frac{x^5}{x^2} = x^3$
Power	$\left(a^{m}\right)^{n}=a^{mn}$	$\left(x^3\right)^2 = x^6$
Product Power	$(ab)^n = a^n b^n$	$(2x)^3 = 8x^3$
Quotient Power	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\left(\frac{x}{3}\right)^2 = \frac{x^2}{9}$

Special Values:

- $a^0 = 1$ (for $a \neq 0$)
- $a^1 = a$
- $a^{-n} = \frac{1}{a^n}$
- $a^{1/n} = \sqrt[n]{a}$

Scientific Notation

Format: $a \times 10^n$ where $1 \le |a| < 10$

Examples:

- $56,700,000 = 5.67 \times 10^7$
- $0.00000423 = 4.23 \times 10^{-6}$

Operations:

- Multiply: $(3\times 10^5)\times (2\times 10^3)=6\times 10^8$ Divide: $\frac{8.4\times 10^7}{2.1\times 10^4}=4\times 10^3$

Absolute Value

Definition: $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$

Solving Equations: |ax + b| = c has solutions:

• ax + b = c and ax + b = -c

Inequalities:

- $\bullet \ |x| < a \ \mathrm{means} \ -a < x < a$
- |x| > a means x < -a or x > a

Basic Factorization

Common Factor: Always check first!

• $12x^3 - 18x^2 + 6x = 6x(2x^2 - 3x + 1)$

Difference of Squares:

- $a^2 b^2 = (a+b)(a-b)$
- $x^2 9 = (x+3)(x-3)$

Perfect Square Trinomials:

•
$$(a+b)^2 = a^2 + 2ab + b^2$$

•
$$(a-b)^2 = a^2 - 2ab + b^2$$

Advanced Factorization

AC Method: For $ax^2 + bx + c$ when $a \neq 1$

1. Find ac

2. Find factors of ac that sum to b

3. Rewrite middle term and group

4. Factor by grouping

Example: $6x^2 + 13x + 5$

• ac = 30, factors (3, 10) sum to 13

• $6x^2 + 3x + 10x + 5 = (3x + 5)(2x + 1)$

Sum and Difference of Cubes:

•
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

•
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Factoring by Grouping:

• Group terms with common factors

• Factor each group, then factor the common binomial

Roots and Radicals

Properties of Radicals:

Property	Formula	Example
Product	$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	$\sqrt{12} = 2\sqrt{3}$
Quotient	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	$\sqrt{\frac{16}{4}} = 2$
Power	$\sqrt[n]{a^m} = a^{m/n}$	$\sqrt[3]{x^6} = x^2$

Sign Rules:

• Even roots: Always positive ($\sqrt{9} = 3$, not -3)

• Odd roots: Keep original sign $(\sqrt[3]{-8} = -2)$

Rationalizing Denominators:

• Simple: $\frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$

- Binomials: Use conjugates $(a+b\sqrt{c})(a-b\sqrt{c})=a^2-b^2c$

Substitution for Factorization

Strategy: Replace repeated expressions with a simpler variable to reveal hidden patterns.

3

Common Patterns:

• Quadratic in form: $x^4 - 13x^2 + 36$

► Let
$$u = x^2$$
: $u^2 - 13u + 36 = (u - 4)(u - 9) = (x^2 - 4)(x^2 - 9)$

• Repeated expressions: $(2x + 1)^2 - 3(2x + 1) - 10$

► Let
$$u = 2x + 1$$
: $u^2 - 3u - 10 = (u - 5)(u + 2) = (2x - 4)(2x + 3)$

• Radical expressions: $x + 6\sqrt{x} + 8$

• Let
$$u = \sqrt{x}$$
: $u^2 + 6u + 8 = (u+2)(u+4) = (\sqrt{x}+2)(\sqrt{x}+4)$

Steps:

- 1. Identify the repeated pattern
- 2. Substitute with a simple variable
- 3. Factor the resulting expression
- 4. Substitute back
- 5. Check if further factoring is possible

Logarithms

Definition: If $a^x = b$, then $\log_a(b) = x$

Basic Properties:

- $\log_a(1) = 0$ (since $a^0 = 1$)
- $\log_a(a) = 1$ (since $a^1 = a$)
- $\log_a(a^x) = x$ (inverse operations)
- $a^{\log_a(x)} = x$ (inverse operations)

Laws of Logarithms:

Rule	Formula	Example
Product	$\log_a(xy) = \log_a(x) + \log_a(y)$	$\log(20) = \log(4) + \log(5)$
Quotient	$\log_a\!\left(\tfrac{x}{y}\right) = \log_a(x) - \log_a(y)$	$\log\left(\frac{100}{4}\right) = \log(100) - \log(4)$
Power	$\log_a(x^n) = n \log_a(x)$	$\log(8^3) = 3\log(8)$

Change of Base Formula:

$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)} = \frac{\ln(x)}{\ln(a)} = \frac{\log(x)}{\log(a)}$$

Common Notations:

- $\log(x)$ means $\log_{10}(x)$ (common logarithm)
- $\ln(x)$ means $\log_e(x)$ (natural logarithm, $e \approx 2.718$)

Solving Exponential Equations:

- If bases are the same: $a^x = a^y \Rightarrow x = y$
- If bases differ: Take logarithms of both sides

Pascal's Triangle and Binomial Expansion

Pascal's Triangle:

```
Row 0: 1
Row 1: 1 1
Row 2: 1 2 1
Row 3: 1 3 3 1
Row 4: 1 4 6 4 1
Row 5: 1 5 10 10 5 1
```

Pattern: Each number = sum of the two numbers above it

Common Expansions:

```
 \bullet \ (a+b)^2 = a^2 + 2ab + b^2   \bullet \ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
```

Binomial Theorem: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ (later important!)

Compound Growth & Interest

Core Forms (from Sessions 01-03, 01-05, 01-06):

- (Discrete once per period) $A = P(1+r)^t$
 - ightharpoonup P principal, r rate per period, t number of periods
- (Compounded n times per year) $A = P \big(1 + \frac{r}{n} \big)^{nt}$
 - ► r nominal annual rate, n compounding frequency (12 monthly, 4 quarterly, etc.)
- (Continuous compounding) $A = Pe^{rt}$