print("Hello World!")
Hello World!
Optimization with Julia
Allows for fast data workflows, particularly in scientific computing!
JuMP is an alternative to Pyomo, GAMS, and AMPL!
Modeling is a creative process!
\[ \begin{aligned} &\text{maximize} \quad F = \sum_{j\in \mathcal{J}} c_j \times X_j \end{aligned} \]
subject to
\[ \begin{aligned} &\sum_{j\in \mathcal{J}} a_{i,j} \times X_j \le b_i && \forall i \in \mathcal{I} \\ &X_j \ge 0 && \forall j \in \mathcal{J} \end{aligned} \]
\[ \begin{aligned} \mathcal{I} &: \text{set of $i \in \mathcal{I}$,}\\ \mathcal{J} &: \text{set of $j \in \mathcal{J}$,}\\ F &: \text{Objective function variable,}\\ X_{j} &: \text{decision variables,}\\ c_{j} &: \text{objective function coefficients,}\\ a_{i,j} &: \text{parameters,}\\ b_{i} &: \text{parameters} \end{aligned} \]
To prepare for the upcoming lectures, we start by installing the Julia Programming Language and an Integrated Development Environment (IDE) to work with Julia.
If you are ever asked to add something to your “PATH”, do so!
print("Hello World!")
Hello World!
Hello World!
→ perfect!.ipynb
filesJupyter
on the rightjulia
in the terminal]
to open the package manageradd IJulia
Enter
using IJulia; notebook()
You can also run the notebooks in VS Code, if you prefer!
For interesting literature to learn more about Julia, take a look at the literature list of this course.