
Section 06: Integral Calculus
Test your understanding of Area Between Curves & Surplus
Find the area between \(f(x) = x^2\) and \(g(x) = 2x\) from \(x = 0\) to \(x = 2\).
If demand is \(D(q) = 80 - 2q\) and supply is \(S(q) = 20 + q\), find equilibrium \((q^*, p^*)\).
Set up (but don’t evaluate) the consumer surplus integral for the market in problem 2.
Find \(\int (3x^2 - 4x + 5) \, dx\)
Focus on area between curves and economic surplus
Today we learn a powerful technique for integrating products of functions and synthesize our integration skills!
Integration by parts is essential for the Feststellungsprufung!
Consider this integral:
\[\int x \cdot e^x \, dx\]
Question: Can we use the power rule?
No!
Question: Can we use substitution?
Try \(u = x\) or \(u = e^x\)… Neither works cleanly!
Some products of functions require a special technique.
Recall the product rule for derivatives:
\[\frac{d}{dx}[u \cdot v] = u' \cdot v + u \cdot v'\]
Rearranging:
\[u \cdot v' = \frac{d}{dx}[u \cdot v] - u' \cdot v\]
Integrating both sides:
\[\int u \cdot v' \, dx = u \cdot v - \int u' \cdot v \, dx\]
\[\int \underbrace{u(x)}_{\text{choose}} \cdot \underbrace{v'(x) \, dx}_{= \, dv} = u(x) \cdot v(x) - \int \underbrace{v(x)}_{\text{from integrating } dv} \cdot \underbrace{u'(x) \, dx}_{= \, du}\]
This is the same as:
\[\int u \, dv = uv - \int v \, du\]
Strategy: Choose \(u\) and \(dv\) so that \(\int v \, du\) is easier than \(\int u \, dv\)!
You already know this notation — from every integral you’ve written!
Question: Do you get the basic idea?
How do we choose which function to call \(u\)?
| Letter | Function Type | Example |
|---|---|---|
| L | Logarithmic | \(\ln(x)\), \(\log(x)\) |
| I | Inverse trig | \(\arctan(x)\), \(\arcsin(x)\) |
| A | Algebraic | \(x\), \(x^2\), polynomials |
| T | Trigonometric | \(\sin(x)\), \(\cos(x)\) |
| E | Exponential | \(e^x\), \(2^x\) |
Choose \(u\) in this order of priority!
The idea: Choose \(u\) to be the function that becomes simpler when differentiated.
The LIATE rule is a guideline, not a strict rule. Sometimes you need to experiment!
Step 1: Identify \(u\) and \(dv\) using LIATE: choose \(u = x\) (A comes before E)
Step 2: Set up the parts
| We choose: | We compute: |
|---|---|
| \(u = x\) | \(du = 1 \cdot dx = dx\) (differentiate \(u\), attach \(dx\)) |
| \(dv = e^x \, dx\) | \(v = \int e^x \, dx = e^x\) (integrate \(dv\) to get \(v\)) |
Step 3: Apply the formula \(\int u \, dv = uv - \int v \, du\)
\[\int \underbrace{x}_{u} \cdot \underbrace{e^x \, dx}_{dv} = \underbrace{x}_{u} \cdot \underbrace{e^x}_{v} - \int \underbrace{e^x}_{v} \, \underbrace{dx}_{du}\]
\[\int x \cdot e^x \, dx = x \cdot e^x - \int e^x \, dx\]
\[= x \cdot e^x - e^x + C\]
\[= e^x(x - 1) + C\]
Verification: Differentiate to check: \[\frac{d}{dx}[e^x(x-1)] = e^x(x-1) + e^x \cdot 1 = e^x \cdot x - e^x + e^x = x \cdot e^x \quad \checkmark\]
This is a common exam problem!
Step 1: Choose \(u = x + 1\) (algebraic), \(dv = e^x \, dx\)
| We choose: | We compute: |
|---|---|
| \(u = x + 1\) | \(du = 1 \cdot dx = dx\) (differentiate \(u\), attach \(dx\)) |
| \(dv = e^x \, dx\) | \(v = \int e^x \, dx = e^x\) (integrate \(dv\) to get \(v\)) |
Step 2: Apply the formula
\[\int (x+1) \cdot e^x \, dx = (x+1) \cdot e^x - \int e^x \, dx\]
\[= (x+1) \cdot e^x - e^x + C = e^x(x + 1 - 1) + C = x \cdot e^x + C\]
Step 1: Identify using LIATE: choose \(u = \ln(x)\) (L comes first!)
Step 2: Set up the parts
| We choose: | We compute: |
|---|---|
| \(u = \ln(x)\) | \(du = \frac{1}{x} \cdot dx\) (differentiate \(u\), attach \(dx\)) |
| \(dv = x \, dx\) | \(v = \int x \, dx = \frac{x^2}{2}\) (integrate \(dv\) to get \(v\)) |
Step 3: Apply the formula
\[\int x \cdot \ln(x) \, dx = \ln(x) \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx\]
\[\int x \cdot \ln(x) \, dx = \frac{x^2 \ln(x)}{2} - \int \frac{x}{2} \, dx\]
\[= \frac{x^2 \ln(x)}{2} - \frac{x^2}{4} + C\]
\[= \frac{x^2}{4}\left(2\ln(x) - 1\right) + C\]
Notice how choosing \(u = \ln(x)\) simplified the integral because \(\frac{1}{x} \cdot x^2 = x\) (simpler than before).
Consider: \(\int x^2 \cdot e^x \, dx\)
First application: \(u = x^2\), \(dv = e^x \, dx\)
| We choose: | We compute: |
|---|---|
| \(u = x^2\) | \(du = 2x \cdot dx\) (differentiate \(u\), attach \(dx\)) |
| \(dv = e^x \, dx\) | \(v = \int e^x \, dx = e^x\) (integrate \(dv\) to get \(v\)) |
\[\int x^2 \cdot e^x \, dx = x^2 \cdot e^x - \int 2x \cdot e^x \, dx\]
Problem: We still have \(\int x \cdot e^x \, dx\) - another integration by parts problem!
Second application: For \(\int x \cdot e^x \, dx\), let \(u = x\), \(dv = e^x \, dx\)
\[\int x \cdot e^x \, dx = x \cdot e^x - e^x\]
Substituting back:
\[\int x^2 \cdot e^x \, dx = x^2 \cdot e^x - 2(x \cdot e^x - e^x) + C\]
\[= x^2 \cdot e^x - 2x \cdot e^x + 2e^x + C= e^x(x^2 - 2x + 2) + C\]
This exact type appeared on the exam!
First application: \(u = x^2\), \(dv = e^{-x} \, dx\), so \(v = -e^{-x}\)
\[\int x^2 \cdot e^{-x} \, dx = -x^2 \cdot e^{-x} - \int -2x \cdot e^{-x} \, dx\]
\[= -x^2 \cdot e^{-x} + 2\int x \cdot e^{-x} \, dx\]
Second application: \(u = x\), \(dv = e^{-x} \, dx\), so \(v = -e^{-x}\)
\[\int x \cdot e^{-x} \, dx = -x \cdot e^{-x} + \int e^{-x} \, dx = -x \cdot e^{-x} - e^{-x}\]
Substituting back:
\[\int x^2 \cdot e^{-x} \, dx = -x^2 \cdot e^{-x} + 2(-x \cdot e^{-x} - e^{-x}) + C\]
\[= -x^2 \cdot e^{-x} - 2x \cdot e^{-x} - 2e^{-x} + C\]
\[= -e^{-x}(x^2 + 2x + 2) + C\]
Verification is important! Differentiate your answer if you have the time: \[\frac{d}{dx}[-e^{-x}(x^2+2x+2)] = e^{-x}(x^2+2x+2-2x-2) = x^2 e^{-x}\]
For definite integrals:
\[\int_a^b u \, dv = [uv]_a^b - \int_a^b v \, du\]
Example: \(\int_0^1 x \cdot e^x \, dx\), we found \(\int x \cdot e^x \, dx = e^x(x - 1) + C\)
\[\int_0^1 x \cdot e^x \, dx = [e^x(x-1)]_0^1 = e^1(1-1) - e^0(0-1)\]
\[= 0 - (-1) = 1\]

Essentially, we use integration by parts and then compute the definite integral as learned.
Work individually for 5 minutes
Work individually for 7 minutes
Key idea: What is the “average height” of a function over an interval?
\[f_{avg} = \frac{1}{b-a} \int_a^b f(x) \, dx\]

Makes sense, doesn’t it?
Find the average value of \(f(x) = x^2\) on \([0, 4]\)
\[f_{avg} = \frac{1}{4-0} \int_0^4 x^2 \, dx\]
\[= \frac{1}{4} \left[\frac{x^3}{3}\right]_0^4\]
\[= \frac{1}{4} \cdot \frac{64}{3} = \frac{16}{3} \approx 5.33\]
The area under \(f(x)\) equals the area of a rectangle with height \(f_{avg}\) and width \((b-a)\).
Key relationship: If \(MR(x)\) is the marginal revenue, then total revenue from selling \(a\) to \(b\) units is:
\[\text{Revenue}_{a \to b} = \int_a^b MR(x) \, dx\]
Example: \(MR(x) = 100 - 2x\), revenue from selling units 10 to 30:
\[\int_{10}^{30} (100 - 2x) \, dx = [100x - x^2]_{10}^{30}\]
\[= (3000 - 900) - (1000 - 100) = 2100 - 900 = 1200 \text{ EUR}\]
Scenario: Profit rate \(P'(t) = 8t - t^2\) thousand EUR per month (\(t\))
Find total profit from month 2 to month 6.
\[P_{2 \to 6} = \int_2^6 (8t - t^2) \, dt = \left[4t^2 - \frac{t^3}{3}\right]_2^6\]
\[= \left(144 - 72\right) - \left(16 - \frac{8}{3}\right)\]
\[= 72 - \frac{40}{3} = \frac{216 - 40}{3} = \frac{176}{3} \approx 58.67 \text{ thousand EUR}\]
Work with a partner for 10 minutes
Find the average value of \(f(x) = 2x + 1\) on \([0, 4]\)
A company’s marginal profit is \(P'(x) = 80 - 4x\) EUR/unit.
A machine’s production rate is \(P(t) = 100e^{-0.1t}\) units/hour. Find the average production rate over the first 10 hours.
Scenario: A company expects future profits that decay over time. The profit rate is the follwoing where \(t\) is years and profit is in thousands of euros.
\[P'(t) = (100 + 20t) \cdot e^{-0.05t}\]
Find the antiderivative of the profit rate using integration by parts
Calculate the total profit from year 0 to year 10
At what rate is profit changing at \(t = 5\)?
Interpret the results for a business decision
| Concept | Formula |
|---|---|
| Antiderivative | \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\) |
| FTC | \(\int_a^b f(x) \, dx = F(b) - F(a)\) |
| Area Between | \(\int_a^b [f(x) - g(x)] \, dx\) |
| Consumer Surplus | \(\int_0^{q^*} [D(q) - p^*] \, dq\) |
| Producer Surplus | \(\int_0^{q^*} [p^* - S(q)] \, dq\) |
| Integration by Parts | \(\int u \, dv = uv - \int v \, du\) |
| Average Value | \(\frac{1}{b-a} \int_a^b f(x) \, dx\) |
Work individually
Find \(\int (x + 2) \cdot e^x \, dx\)
Find the average value of \(f(x) = x^2\) on \([1, 3]\).
Why does LIATE put logarithms before algebraic functions?
What does consumer surplus measure economically?
Comprehensive Assessment
Complete tasks and review all integration techniques!
Session 06-05 - Integration by Parts & Synthesis | Dr. Nikolai Heinrichs & Dr. Tobias Vlcek | Home