
Tutorial V.II - Recap with Randomness

Programming: Everyday Decision-Making Algorithms

Introduction
From now on, it is rather difficult to give you tasks that you cannot solve within minutes
by yourself with the help of AI. Therefore, today’s tutorial will be more open-ended
than usual. All tasks are designed to be solved together with AI, but you are nonethe-
less the human in the loop. Thus, your responsiblities are to control the AI and to learn
how to use it by doing. Instructions and explanations will only be given sparsely, as
you are encouraged to use AI to ask for help and explanations to explore the tasks on
your own.

Let’s explore how randomness affects our daily decision-making. As always, we will use
Python and simulate various scenarios where randomness plays a crucial role.

Section 1 - Optimal Stopping with Random Candidates
Optimal stopping is a classic problem in decision theory where you want to select the
best candidate from a list of candidates. As seen in the lecture, the 37% rule is a simple
strategy that can be used to solve this problem.

Exercise 1.1 - The 37% Rule
Let’s implement the 37% rule from Optimal Stopping by using random candidates. Your
task is to simulate the process of selecting the best candidate out of a list of random
candidates. Remember, the 37% rule says that you should reject the first 37% of candi-
dates and then select the next candidate who is better than all previous candidates.

First, let’s import the necessary library:

import random

In total, you have 32 candidates. Screen the candidates one by one and compute the
best_candidate_index to find the best candidate.

1

 How to start with AI pair programming

1. In Cursor, you can select the code or text you want to work with and then press
Ctrl+L to open the chat.

2. In the chat, you can ask the AI to help you complete the task or ask it to explain
the code, the task, or related concepts

3. While writing code, you can press Ctrl+K to let the AI help you write the code
directly in the editor.

4. Furthermore, the AI will try to understand your code and might make sugges-
tions on how to improve it or on how to continue. Just press TAB to accept a
suggestion.

random.seed(42) # Sets the random seed for reproducibility
candidates = [random.random() for _ in range(32)]

YOUR CODE BELOW

Test your solution with the following code
assert best_candidate_index == 24, "The selected candidate is not the best
one"
print(r"All tests passed, you have successfully implemented the 37% rule!")

Section 2 - Explore vs Exploit
Remember the explore vs. exploit dilemma? Should you try a new restaurant (explore)
or return to your favorite (exploit)? Let’s simulate this decision-making process!

Exercise 2.1 - Visiting Restaurants
Imagine you’re new to a city with 10 restaurants. Each restaurant has a “true” quality
rating (unknown to you) between 0 and 5 stars. Each time you visit a restaurant, you
get to experience its rating. In total, you will visit restaurants 15 times.

Your goal is to create a simulation that computes the average satisfaction over 15 days
based on an explore vs. exploit strategy. First, you should try each restaurant once (pure
exploration). Then, you should just exploit your favorite restaurant for the remaining
visits. Save the average satisfaction in average_satisfaction and the index of the best
restaurant in best_restaurant_index.

import random

Set up the restaurants (true qualities are unknown to the visitor!)
random.seed(59)
qualities = [random.uniform(1, 5) for _ in range(10)]

YOUR CODE BELOW

2

Test your solution with the following code
assert average_satisfaction > 3.7, "The average satisfaction should be
greater than 3.7"
assert best_restaurant_index == 2, "The best restaurant should be number 3"
print(r"All tests passed, you have successfully implemented the explore vs.
exploit strategy!")

Section 3 - Caching
Caching is a technique that can be used to speed up computations by storing the
results of expensive computations and reusing them when the same inputs occur again.
Let’s implement a simple caching mechanism in Python.

Exercise 3.1 - Random Menu Generator
Create a function generate_daily_menu() that generates a daily menu by randomly
selecting items from different categories. As our “cache” - the daily menu - is rather
small, we only want to receive one menu for each day as a list from the function.

appetizers = ["Sorted Salad", "Binary Bruschetta", "Array of Antipasti"]
mains = ["Loop Lasagna", "Python Pasta", "Recursive Risotto"]
desserts = ["Binary Brownie", "Cache Cookie", "Stack Sundae"]

YOUR CODE HERE

Test your solution with the following code
menu = generate_daily_menu()
assert len(menu) == 3, "Menu should contain exactly 3 items"
assert menu[0] in appetizers, "Appetizer should be from the appetizers
list"
assert menu[1] in mains, "Main course should be from the mains list"
assert menu[2] in desserts, "Dessert should be from the desserts list"

Example usage
print(r"All tests passed, you have successfully implemented the menu
generator!")
print(f"Today's menu:\nAppetizer: {menu[0]}\nMain: {menu[1]}\nDessert:
{menu[2]}")

Section 4 - Scheduling
Scheduling is a classic problem in operations research and in daily life. Let’s implement
a simple scheduling algorithm that tries to find the optimal schedule for a given set of
tasks with the earliest due date strategy.

Exercise 4.1 - Scheduling Tasks
Let’s create a task scheduler that handles tasks with different due dates. The scheduler
should sort tasks by their due date (Earliest Due Date First - EDD strategy) to minimize
potential delays.

3

Your task is to create a function schedule_tasks(tasks) that:

• Sorts tasks by due date
• Creates a schedule with start and end times for each task
• Returns the complete schedule as an pandas DataFrame
• Keep the same column names as in the dictionary

Pre-generated tasks (don't modify this!)
Times are represented in hours from start (hour 0)
For example, due_time: 24 means it's due 24 hours from start
import pandas as pd

tasks = [
 {
 "name": "Project Review",
 "duration": 2, # hours
 "due_time": 12 # due in 12 hours
 },
 {
 "name": "Team Meeting",
 "duration": 4,
 "due_time": 6
 },
 {
 "name": "Client Presentation",
 "duration": 3,
 "due_time": 7
 },
 {
 "name": "Email Updates",
 "duration": 4,
 "due_time": 11
 },
 {
 "name": "Planning Session",
 "duration": 2,
 "due_time": 9
 }
]

YOUR CODE HERE

Test your solution with the following code
schedule_df = schedule_tasks(tasks)
assert schedule_df.shape == (5, 4), "The schedule should have 5 rows and 4
columns"
assert schedule_df.iloc[0]['name'] == "Team Meeting", "First task should be
'Team Meeting'"
assert schedule_df.iloc[4]['name'] == "Project Review", "Fifth task should
be 'Project Review'"
print(r"All tests passed, you have successfully implemented the task
scheduler!")

4

Section 5 - Randomness
In our daily lives, we often encounter situations where randomness plays a crucial role
in decision-making. From choosing a restaurant for dinner to selecting which tasks to
tackle first, incorporating some randomness can actually lead to better outcomes than
strictly deterministic approaches.

Solving your travel problem by brute force
Imagine you want to travel during the semester break and you want to visit 6 cities
and then return to Hamburg. Your aim is to find the route that is the cheapest to travel.
Implement a heuristic that randomly tries 10 different routes and picks the cheapest
one. Save the costs in min_cost.

City names and cost matrix
import pandas as pd
import random

cities = ["New York", "London", "Tokyo", "Sydney", "Barcelona", "Hamburg"]

cost_matrix = [
 [0, 700, 1500, 2000, 800, 900], # New York
 [700, 0, 1200, 1800, 300, 700], # London
 [1500, 1200, 0, 1000, 1100, 1400], # Tokyo
 [2000, 1800, 1000, 0, 1700, 1500], # Sydney
 [800, 300, 1100, 1700, 0, 600], # Barcelona
 [900, 700, 1400, 1500, 600, 0] # Hamburg
]

Create a DataFrame
cost_df = pd.DataFrame(cost_matrix, index=cities, columns=cities)

Display the DataFrame
print(cost_df)

YOUR CODE HERE

 New York London Tokyo Sydney Barcelona Hamburg
New York 0 700 1500 2000 800 900
London 700 0 1200 1800 300 700
Tokyo 1500 1200 0 1000 1100 1400
Sydney 2000 1800 1000 0 1700 1500
Barcelona 800 300 1100 1700 0 600
Hamburg 900 700 1400 1500 600 0

Test your solution with the following code
assert min_cost < 6000, "The cheapest route should be cheaper than 6000.
Try again, if you think your algorithm works correctly."
print(r"All tests passed, you have successfully implemented the route
planner!")

5

Conclusion
We’ve explored how randomness affects decision-making through:

• Explore vs. Exploit trade-offs
• Optimal stopping with random elements
• Caching a random subset of data
• Scheduling tasks with due dates
• Finding the cheapest route for a travel problem

Remember that randomness isn’t always bad - sometimes it’s the best strategy we have!

In the next tutorial, we’ll dive deeper into some free-form tasks!

6

	Introduction
	Section 1 - Optimal Stopping with Random Candidates
	Exercise 1.1 - The 37% Rule

	Section 2 - Explore vs Exploit
	Exercise 2.1 - Visiting Restaurants

	Section 3 - Caching
	Exercise 3.1 - Random Menu Generator

	Section 4 - Scheduling
	Exercise 4.1 - Scheduling Tasks

	Section 5 - Randomness
	Solving your travel problem by brute force

	Conclusion

