
Tutorial IV.III - DataFrames

Programming: Everyday Decision-Making Algorithms

Introduction
Imagine you’re planning a Mars mission. Every task, from equipment checks to crew
training, needs careful scheduling. In this tutorial, we’ll learn how to use Python’s
Pandas library to implement scheduling algorithms like Earliest Due Date (EDD) and
Shortest Processing Time (SPT).

 Note

Before starting, ensure you have the pandas library installed.

{bash}
uv install pandas

{bash}
conda install pandas

Let’s begin by importing pandas:

import pandas as pd

Section 1 - Creating Task DataFrames
In mission planning, we need to track various tasks with their durations and deadlines.
Let’s create a DataFrame to manage these tasks from a dictionary and a list of index
labels:

tasks = pd.DataFrame({
 'task': ['Equipment Check', 'Crew Training', 'Supply Loading'],
 'duration': [6, 3, 7], # hours
 'deadline': [10, 15, 8] # hours from now
},
index=['Task 1', 'Task 2', 'Task 3'])
print(tasks)

 task duration deadline
Task 1 Equipment Check 6 10
Task 2 Crew Training 3 15
Task 3 Supply Loading 7 8

1

 Note

The pd.DataFrame() function is used to create a DataFrame. A DataFrame is a two-
dimensional, size-mutable, and heterogeneous tabular data structure with labeled
axes (rows and columns). Here, we’ve created a DataFrame with three rows and four
columns: task, duration, and deadline.

Exercise 1.1 - Create Mission Tasks DataFrame
Create a DataFrame named mission_tasks with critical Mars mission preparation tasks.
Include columns for task (a string), duration (in hours), and deadline (hours from now)
with the following data:

• Life Support Check: 4 hours, deadline 12
• Navigation Systems: 7 hours, deadline 16
• Fuel Loading: 6 hours, deadline 8
• Communication Setup: 3 hours, deadline 6

Make sure, that the hours and deadlines are integers. And create the DataFrame with
the index labels Task 1, Task 2, Task 3, Task 4.

YOUR CODE BELOW

Test your answer
def test_mission_tasks(df):

 # Check if all required columns exist
 required_cols = ['task', 'duration', 'deadline']
 assert all(col in df.columns for col in required_cols), "Missing
required columns"

 # Check if we have the correct number of tasks
 assert len(df) == 4, "Should have exactly 4 tasks"

 # Check if all values are of correct type
 assert df['duration'].dtype in ['int32', 'int64'], "Duration should be
integers"
 assert df['deadline'].dtype in ['int32', 'int64'], "Deadline should be
integers"

 # Check if all required tasks are present
 required_tasks = {'Life Support Check', 'Navigation Systems', 'Fuel
Loading', 'Communication Setup'}
 assert set(df['task']) == required_tasks, "Missing or incorrect task
names"

test_mission_tasks(mission_tasks)

print("Mission tasks created successfully!")

2

Section 2 - Accessing Rows and Columns
When working with DataFrames, we sometimes need to access specific rows or
columns. Let’s explore different ways to do this using our previously created tasks
DataFrame.

Accessing Columns
There are two main ways to access columns:

1. Using square bracket notation []
2. Using dot notation .

Access a single column (returns a Series)
durations = tasks['duration']
print("Durations:\n", durations)

Access multiple columns (returns a DataFrame)
selected_cols = tasks[['task', 'duration']]
print("\nSelected columns:\n", selected_cols)

Using dot notation (only works for simple column names)
priorities = tasks.deadline
print("\nPriorities:\n", priorities)

Durations:
 Task 1 6
Task 2 3
Task 3 7
Name: duration, dtype: int64

Selected columns:
 task duration
Task 1 Equipment Check 6
Task 2 Crew Training 3
Task 3 Supply Loading 7

Priorities:
 Task 1 10
Task 2 15
Task 3 8
Name: deadline, dtype: int64

Accessing Rows
We can access rows using:

1. iloc[] for integer-based indexing
2. loc[] for label-based indexing

Get first row using iloc (integer location)
first_row = tasks.iloc[0]
print("First row:\n", first_row)

3

Get rows 0 and 2
selected_rows = tasks.iloc[[0, 2]]
print("\nSelected rows:\n", selected_rows)

Get specific rows and columns
subset = tasks.iloc[0, 0] # First row, first column
print("\nSubset of data based on integer index:\n", subset)

Get specific rows and columns using loc
subset = tasks.loc['Task 2', 'task']
print("\nSubset of data based on labels:\n", subset)

First row:
 task Equipment Check
duration 6
deadline 10
Name: Task 1, dtype: object

Selected rows:
 task duration deadline
Task 1 Equipment Check 6 10
Task 3 Supply Loading 7 8

Subset of data based on integer index:
 Equipment Check

Subset of data based on labels:
 Crew Training

Exercise 4.1 - Data Access Practice
Using the mission_tasks DataFrame from earlier, complete these tasks:

1. Extract only the ‘duration’ column as duration_col
2. Get the first two tasks with all columns as first_two
3. Create a subset containing only the ‘task’ and ‘deadline’ columns as

task_deadline_subset

YOUR CODE BELOW

Test your answer
assert len(duration_col) == 4, "Duration column should have 4 entries"
assert len(first_two) == 2, "Should have first two rows"
assert list(task_deadline_subset.columns) == ['task', 'deadline'], "Should
only have task and deadline columns"
print("Data access exercises completed successfully!")

4

 Tip

Remember:

• Use [] for single or multiple columns
• Use iloc[] when you want to access by position
• Use loc[] when you want to access by label (using the index labels)
• Slicing works similar to Python lists: 0:2 means “from 0 up to (but not including) 2”

Section 3 - Sorting DataFrames for EDD and SPT
The EDD algorithm minimizes maximum lateness by scheduling tasks in order of their
deadlines. This is crucial for mission-critical tasks where delays could be catastrophic.

sorted_tasks = tasks.sort_values('deadline')
print("Tasks sorted by EDD:")
print(sorted_tasks)

Tasks sorted by EDD:
 task duration deadline
Task 3 Supply Loading 7 8
Task 1 Equipment Check 6 10
Task 2 Crew Training 3 15

 Note

The sort_values() method is used to sort the DataFrame by the deadline column.
The tasks in this example is the DataFrame we created in the previous section. If
you want to sort a different dataframe, just replace tasks with the name of the
dataframe you want to sort. The method returns a new DataFrame with the rows
sorted by the deadline column. If you want to sort the DataFrame by a different
column, you can pass the name of the column as a string to the by argument. If you
want to sort the DataFrame in descending order, you can pass ascending=False to
the function.

If you want to add a new column, you can do so by assigning a new column to the
DataFrame. For example, if you want to add a new column called completion_time to
the tasks DataFrame, you can do so by assigning a new column to the DataFrame:

tasks['delayed_deadline'] = tasks['deadline'] + 1
print(tasks)

 task duration deadline delayed_deadline
Task 1 Equipment Check 6 10 11

5

Task 2 Crew Training 3 15 16
Task 3 Supply Loading 7 8 9

Here, we’ve added a new column called delayed_deadline to the tasks DataFrame. The
new column is calculated by adding 1 to the deadline column.

Exercise 2.1 - Apply EDD to Mission Tasks
Sort your mission_tasks using the EDD algorithm (sort by deadline).

YOUR CODE BELOW

Test your answer
assert edd_schedule.iloc[0]['task'] == 'Communication Setup', "First task
should be Communication Setup"
print("EDD Schedule created successfully!")
print(edd_schedule)

Exercise 2.2 - Calculate New Deadline
Unfortuantely, the mission has been delayed as some tasks are rather complex. Add a
new column to the mission_tasks DataFrame called new_deadline. The new deadline is
the old deadline plus the duration of the task.

YOUR CODE BELOW

Test your answer
assert 'new_deadline' in mission_tasks.columns, "Missing new_deadline
column"
assert all(mission_tasks['new_deadline'] > mission_tasks['deadline']), "New
deadlines should be later than original deadlines"
print("New deadlines calculated successfully!")
print(mission_tasks)

Section 3 - Looping over DataFrames
Now, we want to apply the EDD algorithm to the mission_tasks DataFrame. We can
do this sorting the rows by deadline and then looping over the rows, computing the
completion time and the maximum delay.

To do this, you can use the iterrows() method. The iterrows() method returns an
iterator yielding index and row as a Series. For each row, you can access the values
using the column names as keys. Let’s do this step by step on the tasks DataFrame for
the original deadline.

Sort by deadline
sorted_tasks = tasks.sort_values('deadline')

Initialize completion time and max delay

6

completion_time = 0
max_delay = 0

Loop over sorted tasks
for index, row in sorted_tasks.iterrows():
 print(f"Processing task: {row['task']} with index: {index}")
 completion_time += row['duration']

 if completion_time > row['deadline']:
 delay = completion_time - row['deadline']

 if delay > max_delay:
 max_delay = delay

print(f"Maximum delay: {max_delay} hours")
print(f"Completion time: {completion_time} hours")
print(sorted_tasks)

Processing task: Supply Loading with index: Task 3
Processing task: Equipment Check with index: Task 1
Processing task: Crew Training with index: Task 2
Maximum delay: 3 hours
Completion time: 16 hours
 task duration deadline delayed_deadline
Task 3 Supply Loading 7 8 9
Task 1 Equipment Check 6 10 11
Task 2 Crew Training 3 15 16

 Note

Note, how the index shows the index of the row in the original DataFrame!

If you want to access the index of the row, you can use the name attribute to
access it. For example, if you want to access the index of the last row, you can use
sorted_tasks.iloc[-1].name.

print(sorted_tasks.iloc[-1].name)

Task 2

Exercise 3.1 - Apply Earliest Due Date to Mission Tasks
Now it is your turn: Apply the EDD algorithm to the mission_tasks DataFrame. Remem-
ber, that the EDD algorithm sorts the tasks by the original deadline and then loops over
the rows, computing the completion time and maximum delay for each task (just like
in the example above).

YOUR CODE BELOW

7

Test your answer
assert edd_schedule.iloc[0]['task'] == 'Communication Setup', "First task
should be Communication Setup"
assert max_delay == 4, "Maximum delay should be 4 hours"
assert completion_time == 20, "Completion time should be 20 hours"
print("EDD Schedule created successfully!")
print(edd_schedule)

Exercise 3.2 - Apply Shortest Processing Time to Mission Tasks
Now, apply the SPT algorithm to the mission_tasks DataFrame. Remember, that the
SPT algorithm sorts the tasks by duration and then loops over the rows, computing the
completion time and total waiting time for all tasks.

Compute the sum of the waiting times for all tasks in a variabel called
total_waiting_time and compute the completion time of the last task in a variable
called completion_time.

YOUR CODE BELOW

Test your answer
assert spt_schedule.iloc[0]['task'] == 'Communication Setup', "First task
should be Communication Setup"
assert total_waiting_time == 23, "Total waiting time should be 23"
assert completion_time == 20, "Completion time should be 20"
print("SPT Schedule created successfully!")
print(spt_schedule)
print(f"Total waiting time: {total_waiting_time}")

Conclusion
You’ve learned how to implement and compare different scheduling algorithms using
Pandas DataFrames. These concepts aren’t just theoretical - they’re actively used in
mission planning and can be applied to personal task management as well.

Remember: - EDD minimizes maximum lateness - SPT minimizes average completion
time - Real-world scheduling often needs hybrid approaches considering priorities and
dependencies

Solutions
You will likely find solutions to most exercises online. However, we strongly encourage
you to work on these exercises independently without searching explicitly for the exact
answers to the exercises. Understanding someone else’s solution is very different from
developing your own. Use the lecture notes and try to solve the exercises on your own.
This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the
concepts and improve your programming abilities. If you encounter difficulties, review

8

the lecture materials, experiment with different approaches, and don’t hesitate to ask
for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub
repository, but we will also quickly go over them next week. To access the solutions,
click on the Github button on the lower right and search for the folder with today’s
lecture and tutorial. Alternatively, you can ask ChatGPT or Claude to explain them to
you. But please remember, the goal is not just to complete the exercises, but to under-
stand the concepts and improve your programming abilities.

That’s it for this weeks tutorials. Next week we are going to cover the topic of random-
ness in everyday life.

9

	Introduction
	Section 1 - Creating Task DataFrames
	Exercise 1.1 - Create Mission Tasks DataFrame

	Section 2 - Accessing Rows and Columns
	Accessing Columns
	Accessing Rows
	Exercise 4.1 - Data Access Practice

	Section 3 - Sorting DataFrames for EDD and SPT
	Exercise 2.1 - Apply EDD to Mission Tasks
	Exercise 2.2 - Calculate New Deadline

	Section 3 - Looping over DataFrames
	Exercise 3.1 - Apply Earliest Due Date to Mission Tasks
	Exercise 3.2 - Apply Shortest Processing Time to Mission Tasks

	Conclusion
	Solutions

