Tutorial IIL.III - Package Management

Programming: Everyday Decision-Making Algorithms

Introduction

Welcome to this guided tutorial on understanding packages and package management
in Python! We'll explore this concept through the lens of library management - how
libraries organize, maintain, and share their resources.

Think of Python as your local library’s main building. Just like a library has:

« A main collection (Python’s standard library)

« Different sections (third-party packages)

« A catalog system (a package manager — we use uv)

« Multiple branches (virtual environments / project folders)

In more detail
Let’s break this down:

1. Standard Library: Like the core collection every library branch has:

» Python comes with essential tools built-in
« Data structures (lists, dictionaries, etc.)

« Mathematical functions (sin, cos, sqrt, etc.)
« Random numbers (random, choice, etc.)

2. Third-Party Packages: Similar to specialized sections in a library:

« Data analysis packages (pandas, numpy) — Research section

« Visualization packages (matplotlib, seaborn) — Art books

« Web frameworks (Django, Flask) — Technical manuals

« Machine learning packages (scikit-learn) — Advanced studies section

3. Package Manager (uv): Works like the library’s catalog:

« Installing packages — Ordering new books

» Updating packages — Replacing with newer editions

« Uninstalling packages — Removing outdated books

» Dependencies — “You must read Book A before Book B”

4. Project Environments (managed automatically by uv): Like different library branches:

« Each branch can have its own collection of books (packages)
« Different editions of the same book (package versions)
« Specialized sections for different purposes (project-specific dependencies)

The best part? Most Python packages are free to use, thanks to the open-source
community!

1 Note

We use uv in this course for Python version management, virtual environments, and
packages. See the separate guide for more details: uv setup.

Section 1 - Using Standard Libraries

Before we start using external packages, let’s take a look at Python’s standard libraries.
Python comes with a set of standard libraries that are always available. You can
use these libraries by simply importing them. For example, the math library provides
mathematical functions like sqrt and sin and the random library provides functions to
generate random numbers. You can import these libraries using the following syntax:

import math
import random

You can then use the functions provided by these libraries by calling them with the
library name as a prefix. For example, the following code calculates the square root
of 16.

a_square_root = math.sqrt(16)
print(f"The square root of 16 is fa_square_root?!")

The square root of 16 is 4.0!

The following code generates a random number between O and 1.

a_random_number = random.random()
print(f"A random number is {a_random_number?!")

A random number is ©.9538523548716832!

We can also use the library to choose a random element from a list. For example, the
following code chooses a random element from the list ['book1', 'book2', 'book3'].
Try it out by executing the cell multiple times.

random_choice = random.choice(['bookl', 'book2', 'book3'])
print(f"We chose srandom_choice?!")

We chose book2!

Sometimes, we only need one function from a library. In this case, we can use the from
keyword to import only the specific function we need. For example, the following code
imports only the randint function from the random library and uses it to generate a
random integer between 1and 10.

../general/uv.qmd

from random import randint
a_random_integer = randint(1, 10)
print(f"A random integer between 1 and 10 is fa_random_integer?!")

A random integer between 1 and 10 is 5!

Other times, we might need to work with a library that has a rather long name. In this
case, we can use the as keyword to give the library a shorter name. For example, the
following code imports the random library and gives it the shorter name rd.

import random as rd
a_random_integer = rd.randint(1, 160)
print(f"Now, a random integer between 1 and 100 is sa_random_integer?!")

Now, a random integer between 1 and 100 is 24!

Exercise 1.1 - Use the math library
Use the math library to calculate the square root of 256. Call the result square_root.

YOUR CODE BELOW

assert square_root == 16
print(f"Great job! The square root of 256 is §square_root?!")

Exercise 1.2 - Use the random library
Use the random library to generate a random number between 1and 25. Call the result

random_number.

assert random_number >= 1 and random_number <= 25
print(f"Good! You generated a random integer $random_number? between 1 and
251")

Section 2 - Using a package manager (uv)
Just as a library needs a system to track books (checkout system, catalog, etc.), Python
projects need a tool to manage versions and dependencies. We use uv because it:

« Keeps track of what’s available (like searching the catalog)
« Handles “checkouts” (installing packages)
« Manages “returns” (uninstalling packages)
« Ensures you have the right “edition” (version management)

Exercise 2.1 - Check your uv installation
Open a terminal (not the Python REPL) and run:

sbash?
uv —--version

You should see a version number.

Then confirm your Python version (after installing one via uv if needed):

sbash?
uv run python --version

Section 3 - Installing Packages

Installing packages is like ordering new books for your library branch. With uv you
typically:

« Initialize a project once (uv init)

+ Add dependencies (uv add packagename)

« Remove them if not needed (uv remove packagename)

« Sync a project copied from elsewhere (uv sync)

« Update dependencies (uv update)

Under the hood uv creates (and reuses) a virtual environment for the project. Luckily
most of that is handled for you and not that important in this basic introduction to
Python.

Exercise 3.1 - Add pandas
Inside a uv-initialized project directory, run:

sbash?
uv add pandas

This: - Resolves dependencies - Adds pandas to pyproject.toml - Installs it into the
project’s virtual environment

You can test if the installation was successful by running:

Test your answer
try:

import pandas

print("pandas installed successfully!")
except ImportError:

print("pandas was not installed correctly")

(If you see an import error, verify you are inside the project folder you initialized with

uv init.)
Virtual environments are like having different library branches. Each branch can have:

« Its own collection of books (packages)
« Different editions of the same book (package versions)

« Specialized sections for different purposes (project-specific dependencies)
This separation ensures that:

« Changes in one branch don’t affect others (project isolation)
« Each branch can be optimized for its community (project-specific dependencies)
« You can experiment without affecting the main collection (development safety)

For now, you don’t need to worry about virtual environments except for the one we
created now. This is more advanced and thus not necessary for this tutorial (or lecture).
But it’s good to know that they exist and that you can use them to manage your
packages.

Conclusion
Great work! You learned how Python projects organize and access code via:

» The standard library

« Third-party packages

« A modern package & environment manager (uv)
« Isolated project environments for reliability

Treat each project like its own library branch: well-labeled, independent, and easy to
maintain.

Solutions

You will likely find solutions to most exercises online. However, we strongly encourage
you to work on these exercises independently without searching explicitly for the exact
answers to the exercises. Understanding someone else’s solution is very different from
developing your own. Use the lecture notes and try to solve the exercises on your own.
This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the
concepts and improve your programming abilities. If you encounter difficulties, review
the lecture materials, experiment with different approaches, and don’t hesitate to ask
for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub
repository, but we will also quickly go over them next week. To access the solutions,
click on the Github button on the lower right and search for the folder with today’s
lecture and tutorial. Alternatively, you can ask ChatGPT or Claude to explain them to
you. But please remember, the goal is not just to complete the exercises, but to under-
stand the concepts and improve your programming abilities.

That’s it for this week! Next week, we’'ll take a look at how to read and write files in
Python and work with tabular data!

	Introduction
	In more detail

	Section 1 - Using Standard Libraries
	Exercise 1.1 - Use the math library
	Exercise 1.2 - Use the random library

	Section 2 - Using a package manager (uv)
	Exercise 2.1 - Check your uv installation

	Section 3 - Installing Packages
	Exercise 3.1 - Add pandas

	Conclusion
	Solutions

