
Tutorial IV.II - Dictionaries
Programming: Everyday Decision-Making Algorithms

Introduction

Welcome to this tutorial on dictionaries in Python! In the realm of personal task scheduling, organizing
tasks efficiently is crucial. Imagine managing your daily activities like checking emails, planning finances,
and scheduling meetings. Python’s dictionaries can be a helpful tool for handling such tasks by allowing
you to store and retrieve information using key-value pairs. As always, follow the structured instructions,
implement your code in the designated blocks, and affirm your comprehension with assert statements.

1

Section 1 - Creating and Accessing
Dictionaries

Think of it this way:

• A dictionary consists of a collection of key-value pairs
• Each key-value pair has a unique key (like for example the task name)
• And an associated value (like for example the task’s priority level)
• Keys are unique, but values can be repeated
• Dictionaries can grow and shrink as needed

Let’s see some examples:

Creating a dictionary of tasks
tasks = {

"Check Emails": 1,
"Liquidity Planning": 2,
"Team Meeting": 3

}
print(tasks)

{'Check Emails': 1, 'Liquidity Planning': 2, 'Team Meeting': 3}

To access the value associated with a key, you can use the following syntax:

print(tasks["Check Emails"])

1

New entries can be added to the dictionary or existing entries can be modified using the following syntax:

tasks["Team Meeting"] = 4
tasks["Answer Emails"] = 7
print(tasks)

{'Check Emails': 1, 'Liquidity Planning': 2, 'Team Meeting': 4, 'Answer Emails': 7}

To delete entries, you can use the del() function:

del(tasks["Answer Emails"])
print(tasks)

{'Check Emails': 1, 'Liquidity Planning': 2, 'Team Meeting': 4}

2

Warning

You will have to create the dictionary first before you can add new entries to it!

To check if a key exists in the dictionary, you can use the following syntax:

print("Check Emails" in tasks)

True

Furthermore, we can nest a dictionary in a dictionary:

Creating a dictionary of projects
projects = {

"Project Alpha": {"status": "In Progress", "deadline": "2023-12-31"},
"Project Beta": {"status": "Completed", "deadline": "2023-06-30"}

}
print(f"The deadline of Project Alpha is {projects['Project Alpha']['deadline']}.")

Exercise 1.1 - Create and Modify a Dictionary

Add a new task called “Prepare Presentation” with the priority level 5 to the existing tasks dictionary. Note,
that you will have to execute the code cell above that creates the dictionary first before you can add the new
task!

YOUR CODE BELOW

Test your answer
assert "Prepare Presentation" in tasks, "The task 'Prepare Presentation' was not added to

the dictionary."↪

print("Great! You've successfully added a new task to the tasks dictionary.")

Exercise 1.2 - Check if a Key Exists

Check if the key “TeamMeeting” exists in the tasks dictionary using the in operator and a conditional state-
ment. If it exists, save the message: 'Team Meeting is in the dictionary' to the variable message. If
it does not exist, save the message: 'Team Meeting is not in the dictionary' to the variable message.
Finally, print the value of the message variable.

YOUR CODE BELOW

Test your answer
assert message == "Team Meeting is in the dictionary", "The message is not correct. It

should be 'Team Meeting is in the dictionary'."↪

print("Great! You've successfully checked if a key exists in the dictionary.")

Exercise 1.3 - Change the Value of a Key

Change the value associated with the key “Check Emails” to 6.

YOUR CODE BELOW

3

Test your answer
assert tasks["Check Emails"] == 6, "The value associated with the key 'Check Emails' is

not correct. It should be 6."↪

print("Great! You've successfully changed the value of a key in the dictionary.")

4

Section 2 - Advanced Dictionary
Operations

Dictionaries can do more than just store simple information. Let’s explore some features.

With the keys() method, you can get all the keys of a dictionary as a dictionary view object. You can convert
it to a list using the list() function.

task_names = tasks.keys() # Get all keys
print("Tasks:", task_names) # Still a dictionary view object
print("Tasks as list:", list(task_names)) # Convert to a list

Tasks: dict_keys(['Check Emails', 'Liquidity Planning', 'Team Meeting'])
Tasks as list: ['Check Emails', 'Liquidity Planning', 'Team Meeting']

To get all the values from a dictionary, you can use the values() method to get a dictionary view object.
Again, you can convert it to a list using the list() function.

all_deadlines = tasks.values()
print("All deadlines:", list(all_deadlines))

All deadlines: [1, 2, 4]

We can also loop through the dictionary using a for loop. To do so, we can use the items() method which
returns a dictionary view object containing the individual key-value pairs of the dictionary.

for task, priority in tasks.items():
print(f"Task: {task}, Priority: {priority}")

Task: Check Emails, Priority: 1
Task: Liquidity Planning, Priority: 2
Task: Team Meeting, Priority: 4

To check the length of a dictionary, you can use the len() function.

print(len(tasks))

3

Exercise 2.1 - Compute the Average Priority

Compute the average priority of the tasks in the tasks dictionary. Save the result to the variable
average_priority.

YOUR CODE BELOW

5

Test your answer
assert len(tasks) == 4, "The number of tasks is not correct. It should be 4 based on the

previous excercises."↪

assert average_priority == 4.25, "The average priority is not correct. It should be
4.25."↪

print("Great! You've successfully computed the average priority of the tasks.")

Exercise 2.2 - Get the Task with the Highest Priority

Get the task with the highest priority from the tasks dictionary. Save the result to the variable
highest_priority_task. Note, that a priority of 1 is the highest priority.

YOUR CODE BELOW

Test your answer
assert highest_priority_task == "Liquidity Planning", f"The task {highest_priority_task}

as the task with the highest priority is not correct. It should be 'Liquidity
Planning'."

↪

↪

print("Great! You've successfully gotten the task with the highest priority.")

Exercise 2.3 - Remove a Task

First, check if the key "Liquidity Planning" exists in the tasks dictionary. If it exists, remove it using the
appropriate method.

Tip

You can use the del() function to remove a key from a dictionary.

YOUR CODE BELOW

Test your answer
assert "Liquidity Planning" not in tasks, "The task 'Liquidity Planning' was not removed

from the dictionary."↪

print("Great! You've successfully removed a task from the dictionary.")

Conclusion

Great! You’ve just navigated through the basics of dictionaries in Python. Dictionaries are powerful data
structures that allow for efficient data organization and retrieval. Remember:

• Dictionaries can store information using key-value pairs
• Accessing them using keys is efficient and easier as accessing them using indices
• Loops can iterate over dictionaries to perform operations on each key-value pair

6

Solutions

You will likely find solutions to most exercises online. However, we strongly encourage you to work on these
exercises independently without searching explicitly for the exact answers to the exercises. Understanding
someone else’s solution is very different from developing your own. Use the lecture notes and try to solve
the exercises on your own. This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the concepts and improve your
programming abilities. If you encounter difficulties, review the lecture materials, experiment with different
approaches, and don’t hesitate to ask for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub repository, but we will
also quickly go over them next week. To access the solutions, click on the Github button on the lower right
and search for the folder with today’s lecture and tutorial. Alternatively, you can ask ChatGPT or Claude to
explain them to you. But please remember, the goal is not just to complete the exercises, but to understand
the concepts and improve your programming abilities.

In the next tutorial, we’ll dive deeper into DataFrames and how to use them!

7

	Introduction
	Section 1 - Creating and Accessing Dictionaries
	Exercise 1.1 - Create and Modify a Dictionary
	Exercise 1.2 - Check if a Key Exists
	Exercise 1.3 - Change the Value of a Key

	Section 2 - Advanced Dictionary Operations
	Exercise 2.1 - Compute the Average Priority
	Exercise 2.2 - Get the Task with the Highest Priority
	Exercise 2.3 - Remove a Task
	Conclusion

	Solutions

