
Tutorial III.III - Package Management
Programming: Everyday Decision-Making Algorithms



Introduction

Welcome to this guided tutorial on understanding packages and package management in Python! We’ll
explore this concept through the lens of library management - how libraries organize, maintain, and share
their resources.

Think of Python as your local library’s main building. Just like a library has:

• A main collection (Python’s standard library)
• Different sections (third-party packages)
• A catalog system (pip package manager)
• Multiple branches (virtual environments)

In more detail

Let’s break this down:

1. Standard Library: Like the core collection every library branch has:

• Python comes with essential tools built-in
• Data structures (lists, dictionaries, etc.)
• Mathematical functions (sin, cos, sqrt, etc.)
• Random numbers (random, choice, etc.)

2. Third-Party Packages: Similar to specialized sections in a library:

• Data analysis packages (pandas, numpy) � Research section
• Visualization packages (matplotlib, seaborn) � Art books
• Web frameworks (Django, Flask) � Technical manuals
• Machine learning packages (scikit-learn) � Advanced studies section

3. Package Manager (pip): Works like the library’s catalog:

• Installing packages � Ordering new books
• Updating packages � Replacing with newer editions
• Uninstalling packages � Removing outdated books
• Dependencies � “You must read Book A before Book B”

4. Virtual Environments: Works like different library branches:

• Each branch can have its own collection of books (packages)
• Different editions of the same book (package versions)
• Specialized sections for different purposes (project-specific dependencies)

The best part? Most Python packages are free to use, thanks to the open-source community!

1



Note

While we’ll practice some commands here, you’ll typically manage packages in your terminal or IDE.

2



Section 1 - Using Standard Libraries

Before we start using packages, let’s take a look at Python’s standard libraries. Python comes with a set
of standard libraries that are always available. You can use these libraries by simply importing them. For
example, the math library providesmathematical functions like sqrt and sin and the random library provides
functions to generate random numbers. You can import these libraries using the following syntax:

import math
import random

You can then use the functions provided by these libraries by calling them with the library name as a prefix.
For example, the following code calculates the square root of 16.

a_square_root = math.sqrt(16)
print(f"The square root of 16 is {a_square_root}!")

The square root of 16 is 4.0!

The following code generates a random number between 0 and 1.

a_random_number = random.random()
print(f"A random number is {a_random_number}!")

A random number is 0.9922587999221325!

Wecan also use the library to choose a randomelement froma list. For example, the following code chooses
a random element from the list ['book1', 'book2', 'book3']. Try it out by executing the cell multiple
times.

random_choice = random.choice(['book1', 'book2', 'book3'])
print(f"We chose {random_choice}!")

We chose book1!

Sometimes, we only need one function from a library. In this case, we can use the from keyword to import
only the specific function we need. For example, the following code imports only the randint function from
the random library and uses it to generate a random integer between 1 and 10.

from random import randint
a_random_integer = randint(1, 10)
print(f"A random integer between 1 and 10 is {a_random_integer}!")

A random integer between 1 and 10 is 7!

Other times, we might need to work with a library that has a rather long name. In this case, we can use the
as keyword to give the library a shorter name. For example, the following code imports the random library
and gives it the shorter name rd.

3



import random as rd
a_random_integer = rd.randint(1, 100)
print(f"Now, a random integer between 1 and 100 is {a_random_integer}!")

Now, a random integer between 1 and 100 is 76!

Exercise 1.1 - Use the math library

Use the math library to calculate the square root of 256. Call the result square_root.

# YOUR CODE BELOW

assert square_root == 16
print(f"Great job! The square root of 256 is {square_root}!")

Exercise 1.2 - Use the random library

Use the random library to generate a random number between 1 and 25. Call the result random_number.

assert random_number >= 1 and random_number <= 25
print(f"Good! You generated a random integer {random_number} between 1 and 25!")

4



Section 2 - Using a package manager

Just as a library needs a system to track books (checkout system, catalog, etc.), Python uses pip or conda
to manage its packages. Think of pip or conda as your library’s management system that:

• Keeps track of what’s available (like searching the catalog)
• Handles “checkouts” (installing packages)
• Manages “returns” (uninstalling packages)
• Ensures you have the right “edition” (version management)

Miniconda

As we have installed Miniconda in the lecture, we will use conda in this tutorial. If you work with a
standard Python installation, you can use pip instead but the commands are slightly different.

Exercise 2.1 - Check your package manager version

Let’s start by checking which version of conda we have installed. We do so by running the following com-
mand in our terminal. Make sure, you are not working with python yet in the terminal, as this command is
not available in the python shell. To open a new terminal in VS Code, you can press ctrl + shift + p and
then type Terminal: Create new terminal. Then, run the following command:

conda info

If you are not using Miniconda, you can use pip instead. Here, you can check the version of your package
manager by running the following command in the terminal:

pip --version

5



Section 3 - Installing Packages

Installing packages is like ordering new books for your library branch. Just as a library might:

• Order books from publishers (pip install from PyPI)
• Get specific editions (version specifications)
• Check for space on shelves (system requirements)
• Ensure books don’t conflict (dependency management)

Luckily most of that is handled for you and not that important in this basic introduction to python. Installing
packages in Python is straightforward using conda install packagename if you are using Miniconda. If
you are not using Miniconda, you can use pip install packagename instead.

Exercise 3.1 - Install pandas

Let’s practice by installing pandas, a popular package for data analysis. Execute the following command in
your terminal and make sure you are not in the python shell.

conda install pandas

Or, if you are not using Miniconda, you can use the following command.

pip install pandas

You can test if the installation was successful by running the following code.

# Test your answer
try:

import pandas
print("pandas installed successfully!")

except ImportError:
print("pandas was not installed correctly")

6



Section 4 - Virtual Environments

Virtual environments are like having different library branches. Each branch can have:

• Its own collection of books (packages)
• Different editions of the same book (package versions)
• Specialized sections for different purposes (project-specific dependencies)

This separation ensures that:

• Changes in one branch don’t affect others (project isolation)
• Each branch can be optimized for its community (project-specific dependencies)
• You can experiment without affecting the main collection (development safety)

For now, you don’t need to worry about virtual environments. This is more advanced and thus not necessary
for this tutorial (or lecture). But it’s good to know that they exist and that you can use them to manage your
packages. Still, if you ever want to check them out, you can use the following command to create a new
virtual environment with a certain name and Python version.

conda create -n myenv python=3.10

Note

You can replace myenv with any name you want and python=3.10 with the Python version you want.

To activate the environment later on, you can use the following command:

conda activate myenv

7



Conclusion

Congratulations! You’ve learned about Python package management through the lens of library caching.
Remember, just like libraries use caching to make popular books more accessible, Python uses package
management to make useful code more accessible!

8



Solutions

You will likely find solutions to most exercises online. However, we strongly encourage you to work on these
exercises independently without searching explicitly for the exact answers to the exercises. Understanding
someone else’s solution is very different from developing your own. Use the lecture notes and try to solve
the exercises on your own. This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the concepts and improve your
programming abilities. If you encounter difficulties, review the lecture materials, experiment with different
approaches, and don’t hesitate to ask for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub repository, but we will
also quickly go over them next week. To access the solutions, click on the Github button on the lower right
and search for the folder with today’s lecture and tutorial. Alternatively, you can ask ChatGPT or Claude to
explain them to you. But please remember, the goal is not just to complete the exercises, but to understand
the concepts and improve your programming abilities.

That’s it for this week! Next week, we’ll take a look at how to read and write files in Python and work with
tabular data!

9


	Introduction
	In more detail

	Section 1 - Using Standard Libraries
	Exercise 1.1 - Use the math library
	Exercise 1.2 - Use the random library

	Section 2 - Using a package manager
	Exercise 2.1 - Check your package manager version

	Section 3 - Installing Packages
	Exercise 3.1 - Install pandas

	Section 4 - Virtual Environments
	Conclusion
	Solutions

