
Cheatsheet
Useful commands and tips

Variables and Types

Variables

• Definition: Containers for storing information.
• Example: x = 10

Data Types

• Integers (int): Whole numbers (e.g., count of dates).
• Floats (float): Decimal numbers (e.g., compatibility score).
• Booleans (bool): True/False values (e.g., availability).
• Strings (str): Text values (e.g., names).

name = "Alexander" # String variable
flags = 0 # Integer variable
butterflies = True # Boolean variable

Type Conversion

• Checking: Use type() to check the type of a variable.
• Conversion:

– int(): Converts to integer.
– float(): Converts to float.
– str(): Converts to string.
– bool(): Converts to boolean.

String Formatting

• Concatenation: Combine strings using +.
• Formatting: Use f"..." for formatted strings.

name = "Alexander"
print(f"Hello, {name}!")

Hello, Alexander!

1

Comparisons

Comparison Operators

Symbol Meaning Example

== Equal to score == 100
!= Not equal to degree != “Computer Science”
< Less than salary < 80000
> Greater than experience > 5
<= Less than or equal to age <= 65
>= Greater than or equal to test_score >= 80

Logical Operators

Symbol Meaning Example

and Both conditions must be true score > 80 and experience > 5
or At least one condition must be true score > 80 or experience > 5
not Condition must be false not (score > 80)

2

Decision-Making

if Statements

• Structure:

if condition:
code to execute if condition is True

• Example:

flat_rating = 8
if flat_rating >= 7:

print("This is a good apartment!")

This is a good apartment!

if-else Statements

• Structure:

if condition:
code to execute if condition is True

else:
code to execute if condition is False

• Example:

flat_rating = 4
if flat_rating >= 7:

print("Apply for this flat!")
else:

print("Keep searching!")

Keep searching!

if-elif-else Statements

• Structure:

if condition:
code to execute if condition is True

elif condition:
code to execute if condition is False

3

else:
code to execute if condition is False

• Example:

flat_rating = 8
if flat_rating >= 9:

print("Amazing flat - apply immediately!")
elif flat_rating >= 7:

print("Good flat - consider applying")
else:

print("Keep looking")

Good flat - consider applying

Complex Conditions

• Nested if Statements: Use if statements inside other if statements.
• Logical Operators: Combine conditions using and, or, not.
• Structure:

if (condition1) and (condition2):
code if both conditions are True

elif (condition1) or (condition2):
code if at least one condition is True

else:
code if none of the conditions are True

• Example:

flat_rating = 9
price = 900
if (flat_rating >= 9) and (price < 1000):

print("Amazing flat - apply immediately!")

Amazing flat - apply immediately!

4

Lists and Tuples

5

Lists

• Definition: Ordered, mutable collections of items.
• Creation: Use square brackets [].

ratings = [4.5, 3.8, 4.2]
restaurants = ["Magic Place", "Sushi Bar", "Coffee Shop"]

Accessing Elements

• Indexing: Use [index] to access elements.

print(restaurants[0]) # Access the first element

Magic Place

• Negative Indexing: Use [-1] to access the last element.

print(restaurants[-1]) # Access the last element

Coffee Shop

• Slicing: Use [start:end] to access a range of elements.

print(restaurants[0:2]) # Access the first two elements

['Magic Place', 'Sushi Bar']

Adding Elements

• Appending: Use append() to add an element to the end of the list.

restaurants.append("Pasta Place")

• Inserting: Use insert() to add an element at a specific index.

restaurants.insert(0, "Pasta Magic")

Removing Elements

• Removing: Use remove() to remove an element by value.

restaurants.remove("Pasta Place")

6

• Removing by Index: Use pop() to remove an element by index.

restaurants.pop(0)

'Pasta Magic'

Nested Lists

• Definition: Lists containing other lists or tuples.
• Accessing: Use nested indexing.

restaurant_data = [
["Pasta Place", 4.5, 3],
["Sushi Bar", 4.2, 1]

]
print(restaurants[0][1]) # Access the second element of the first list

a

Tuples

• Definition: Ordered, immutable collections of items.
• Creation: Use parentheses ().
• Immutability: Once created, cannot be changed.
• Memory Efficiency: Use less memory than lists.
• Use Cases: Ideal for fixed data (e.g., restaurant location).

ratings = (4.5, 3.8, 4.2)
restaurant_info = ("Pasta Place", "Italian", 2020)

7

Loops

for Loops

• Definition: Iterate over a sequence of items.
• Structure:

for item in sequence:
code to execute for each item

• Example:

treatments = ["Standard Drug", "New Drug A", "New Drug B"]
for treatment in treatments:

print(f"Evaluating efficacy of {treatment}")

Evaluating efficacy of Standard Drug
Evaluating efficacy of New Drug A
Evaluating efficacy of New Drug B

Range in for Loops

• Definition: Generate a sequence of numbers.
• Structure:

range(start, stop, step)

• Example:

for phase in range(5): # 0 to 4
print(f"Starting Phase {phase + 1}")

Starting Phase 1
Starting Phase 2
Starting Phase 3
Starting Phase 4
Starting Phase 5

for phase in range(1, 5): # 1 to 4
print(f"Starting Phase {phase}")

Starting Phase 1
Starting Phase 2
Starting Phase 3
Starting Phase 4

8

for phase in range(1, 5, 2): # 1 to 4, step 2
print(f"Starting Phase {phase}")

Starting Phase 1
Starting Phase 3

break and continue

• break: Exit the loop.
• continue: Skip the current iteration and continue with the next.

efficacy_scores = [45, 60, 75, 85, 90]
for score in efficacy_scores:

if score < 50:
continue
print(f"Treatment efficacy: {score}%")

if score >= 85:
break

Tuple unpacking

• Definition: Assign elements of a tuple to variables.
• Structure:
• Example:

restaurant_info = ("Pasta Place", "Italian", 2020)
name, cuisine, year = restaurant_info
print(name)
print(cuisine)
print(year)

Pasta Place
Italian
2020

while Loops

• Definition: Execute code repeatedly as long as a condition is true.
• Structure:

while condition:
code to execute while condition is True

• Example:

phase = 1
while phase <= 5:

print(f"Starting Phase {phase}")
phase += 1

Starting Phase 1
Starting Phase 2

9

Starting Phase 3
Starting Phase 4
Starting Phase 5

10

Functions

Basic Function

• Definition: Use the def keyword.
• Structure:

def function_name(parameters):
code to execute (function body)
return value # Optional

• Example:

def greet_visitor(name):
return f"Welcome to the library, {name}!"

greet_visitor("Student")

'Welcome to the library, Student!'

Return Value

• Definition: The value returned by a function.
• Example:

def multiply_by_two(number):
return number * 2

result = multiply_by_two(5)
print(result)

10

• Note: If a function does not return a value, it implicitly returns None.

Default Parameters

• Definition: Provide default values for function parameters.
• Structure:

def greet_visitor(name="People"):
return f"Welcome to the library, {name}!"

11

print(greet_visitor()) # Calls the function with the default parameter
print(greet_visitor("Tobias")) # Calls the function with a custom parameter

Multiple Parameters

• Definition: Functions can have multiple parameters.
• Structure:

def greet_visitor(name, age):
return f"Welcome to the library, {name}! You are {age} years old."

print(greet_visitor("Tobias", 30))

12

String Methods

• Definition: Methods are functions that are called on strings.
• Structure:

string.method()

• Common String Methods:
– .strip() - Removes whitespace from start and end
– .title() - Capitalizes first letter of each word
– .lower() - Converts to lowercase
– .upper() - Converts to uppercase

• Example:

title = "the hitchhikers guide"
print(title.title())

The Hitchhikers Guide

title = " the hitchhikers guide "
print(title.strip())

the hitchhikers guide

13

Packages

Standard Libraries

• Definition: Libraries that are part of the Python standard library.
• Access: Import them using import.

import math
import random

• For long package names, you can use the as keyword to create an alias.

import random as rd

• To call a function from an imported package, use the package name as a prefix.

random_number = rd.random()
print(random_number)

0.44412210530933083

Installing Packages

• Definition: Install packages using pip.

pip install package_name

• If you are using Miniconda, you can use conda instead.

conda install package_name

14

	Variables and Types
	Variables
	Data Types
	Type Conversion
	String Formatting

	Comparisons
	Comparison Operators
	Logical Operators

	Decision-Making
	if Statements
	if-else Statements
	if-elif-else Statements
	Complex Conditions

	Lists and Tuples
	Lists
	Accessing Elements
	Adding Elements
	Removing Elements
	Nested Lists
	Tuples

	Loops
	for Loops
	Range in for Loops
	break and continue
	Tuple unpacking
	while Loops

	Functions
	Basic Function
	Return Value
	Default Parameters
	Multiple Parameters

	String Methods
	Packages
	Standard Libraries
	Installing Packages

