
Cheatsheet
Useful commands and tips



Variables and Types

Variables

• Definition: Containers for storing information.
• Example: x = 10

Data Types

• Integers (int): Whole numbers (e.g., count of dates).
• Floats (float): Decimal numbers (e.g., compatibility score).
• Booleans (bool): True/False values (e.g., availability).
• Strings (str): Text values (e.g., names).

name = "Alexander" # String variable
flags = 0 # Integer variable
butterflies = True # Boolean variable

Type Conversion

• Checking: Use type() to check the type of a variable.
• Conversion:

– int(): Converts to integer.
– float(): Converts to float.
– str(): Converts to string.
– bool(): Converts to boolean.

String Formatting

• Concatenation: Combine strings using +.
• Formatting: Use f"..." for formatted strings.

name = "Alexander"
print(f"Hello, {name}!")

Hello, Alexander!
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Comparisons

Comparison Operators

Symbol Meaning Example

== Equal to score == 100
!= Not equal to degree != “Computer Science”
< Less than salary < 80000
> Greater than experience > 5
<= Less than or equal to age <= 65
>= Greater than or equal to test_score >= 80

Logical Operators

Symbol Meaning Example

and Both conditions must be true score > 80 and experience > 5
or At least one condition must be true score > 80 or experience > 5
not Condition must be false not (score > 80)
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Decision-Making

if Statements

• Structure:

if condition:
# code to execute if condition is True

• Example:

flat_rating = 8
if flat_rating >= 7:

print("This is a good apartment!")

This is a good apartment!

if-else Statements

• Structure:

if condition:
# code to execute if condition is True

else:
# code to execute if condition is False

• Example:

flat_rating = 4
if flat_rating >= 7:

print("Apply for this flat!")
else:

print("Keep searching!")

Keep searching!

if-elif-else Statements

• Structure:

if condition:
# code to execute if condition is True

elif condition:
# code to execute if condition is False
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else:
# code to execute if condition is False

• Example:

flat_rating = 8
if flat_rating >= 9:

print("Amazing flat - apply immediately!")
elif flat_rating >= 7:

print("Good flat - consider applying")
else:

print("Keep looking")

Good flat - consider applying

Complex Conditions

• Nested if Statements: Use if statements inside other if statements.
• Logical Operators: Combine conditions using and, or, not.
• Structure:

if (condition1) and (condition2):
# code if both conditions are True

elif (condition1) or (condition2):
# code if at least one condition is True

else:
# code if none of the conditions are True

• Example:

flat_rating = 9
price = 900
if (flat_rating >= 9) and (price < 1000):

print("Amazing flat - apply immediately!")

Amazing flat - apply immediately!
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Lists and Tuples
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Lists

• Definition: Ordered, mutable collections of items.
• Creation: Use square brackets [].

ratings = [4.5, 3.8, 4.2]
restaurants = ["Magic Place", "Sushi Bar", "Coffee Shop"]

Accessing Elements

• Indexing: Use [index] to access elements.

print(restaurants[0]) # Access the first element

Magic Place

• Negative Indexing: Use [-1] to access the last element.

print(restaurants[-1]) # Access the last element

Coffee Shop

• Slicing: Use [start:end] to access a range of elements.

print(restaurants[0:2]) # Access the first two elements

['Magic Place', 'Sushi Bar']

Adding Elements

• Appending: Use append() to add an element to the end of the list.

restaurants.append("Pasta Place")

• Inserting: Use insert() to add an element at a specific index.

restaurants.insert(0, "Pasta Magic")

Removing Elements

• Removing: Use remove() to remove an element by value.

restaurants.remove("Pasta Place")
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• Removing by Index: Use pop() to remove an element by index.

restaurants.pop(0)

'Pasta Magic'

Nested Lists

• Definition: Lists containing other lists or tuples.
• Accessing: Use nested indexing.

restaurant_data = [
["Pasta Place", 4.5, 3],
["Sushi Bar", 4.2, 1]

]
print(restaurants[0][1]) # Access the second element of the first list

a

Tuples

• Definition: Ordered, immutable collections of items.
• Creation: Use parentheses ().
• Immutability: Once created, cannot be changed.
• Memory Efficiency: Use less memory than lists.
• Use Cases: Ideal for fixed data (e.g., restaurant location).

ratings = (4.5, 3.8, 4.2)
restaurant_info = ("Pasta Place", "Italian", 2020)
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Loops

for Loops

• Definition: Iterate over a sequence of items.
• Structure:

for item in sequence:
# code to execute for each item

• Example:

treatments = ["Standard Drug", "New Drug A", "New Drug B"]
for treatment in treatments:

print(f"Evaluating efficacy of {treatment}")

Evaluating efficacy of Standard Drug
Evaluating efficacy of New Drug A
Evaluating efficacy of New Drug B

Range in for Loops

• Definition: Generate a sequence of numbers.
• Structure:

range(start, stop, step)

• Example:

for phase in range(5): # 0 to 4
print(f"Starting Phase {phase + 1}")

Starting Phase 1
Starting Phase 2
Starting Phase 3
Starting Phase 4
Starting Phase 5

for phase in range(1, 5): # 1 to 4
print(f"Starting Phase {phase}")

Starting Phase 1
Starting Phase 2
Starting Phase 3
Starting Phase 4
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for phase in range(1, 5, 2): # 1 to 4, step 2
print(f"Starting Phase {phase}")

Starting Phase 1
Starting Phase 3

break and continue

• break: Exit the loop.
• continue: Skip the current iteration and continue with the next.

efficacy_scores = [45, 60, 75, 85, 90]
for score in efficacy_scores:

if score < 50:
continue
print(f"Treatment efficacy: {score}%")

if score >= 85:
break

Tuple unpacking

• Definition: Assign elements of a tuple to variables.
• Structure:
• Example:

restaurant_info = ("Pasta Place", "Italian", 2020)
name, cuisine, year = restaurant_info
print(name)
print(cuisine)
print(year)

Pasta Place
Italian
2020

while Loops

• Definition: Execute code repeatedly as long as a condition is true.
• Structure:

while condition:
# code to execute while condition is True

• Example:

phase = 1
while phase <= 5:

print(f"Starting Phase {phase}")
phase += 1

Starting Phase 1
Starting Phase 2
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Starting Phase 3
Starting Phase 4
Starting Phase 5
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Functions

Basic Function

• Definition: Use the def keyword.
• Structure:

def function_name(parameters):
# code to execute (function body)
return value # Optional

• Example:

def greet_visitor(name):
return f"Welcome to the library, {name}!"

greet_visitor("Student")

'Welcome to the library, Student!'

Return Value

• Definition: The value returned by a function.
• Example:

def multiply_by_two(number):
return number * 2

result = multiply_by_two(5)
print(result)
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• Note: If a function does not return a value, it implicitly returns None.

Default Parameters

• Definition: Provide default values for function parameters.
• Structure:

def greet_visitor(name="People"):
return f"Welcome to the library, {name}!"
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print(greet_visitor()) # Calls the function with the default parameter
print(greet_visitor("Tobias")) # Calls the function with a custom parameter

Multiple Parameters

• Definition: Functions can have multiple parameters.
• Structure:

def greet_visitor(name, age):
return f"Welcome to the library, {name}! You are {age} years old."

print(greet_visitor("Tobias", 30))
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String Methods

• Definition: Methods are functions that are called on strings.
• Structure:

string.method()

• Common String Methods:
– .strip() - Removes whitespace from start and end
– .title() - Capitalizes first letter of each word
– .lower() - Converts to lowercase
– .upper() - Converts to uppercase

• Example:

title = "the hitchhikers guide"
print(title.title())

The Hitchhikers Guide

title = " the hitchhikers guide "
print(title.strip())

the hitchhikers guide
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Packages

Standard Libraries

• Definition: Libraries that are part of the Python standard library.
• Access: Import them using import.

import math
import random

• For long package names, you can use the as keyword to create an alias.

import random as rd

• To call a function from an imported package, use the package name as a prefix.

random_number = rd.random()
print(random_number)

0.44412210530933083

Installing Packages

• Definition: Install packages using pip.

pip install package_name

• If you are using Miniconda, you can use conda instead.

conda install package_name
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