Übung 02

Fließbandproduktion & Leistungsanalysen

Aufgabe 1 - Warteschlangenanalyse in der Automobilproduktion

Ein Automobilzulieferer betreibt eine Fertigungslinie mit 4 Bearbeitungsstationen für Getriebekomponenten. Die Stationen haben folgende Bearbeitungsraten (in Stück pro Stunde):

- Station 1 (Drehen): $\mu_1 = 3$
- Station 2 (Fräsen): $\mu_2=3$
- Station 3 (Schleifen): $\mu_3=4$
- Station 4 (Qualitätskontrolle): $\mu_4=3$

Zwischen den Stationen sind unbeschränkte Puffer vorhanden. Die Zwischenankunftsund Bearbeitungszeiten sind exponentialverteilt.

- a) Bestimmen Sie für die Ankunftsraten $\lambda_1=2$ und $\lambda_1=3$ Stück/h vor der ersten Station:
 - Die Produktionsrate des Systems
 - Die Ankunftsraten an den einzelnen Stationen
- b) Berechnen Sie für beide Szenarien aus a):
 - Die Auslastung jeder Station und die durchschnittliche Systemauslastung
 - Den mittleren Bestand an jeder Station und im Gesamtsystem
 - Die mittlere Durchlaufzeit pro Station und die Gesamtdurchlaufzeit
- c) Für $\lambda_1=2$: Wie hoch ist die Wahrscheinlichkeit, dass sich an Station 1:
 - Genau 5 Werkstücke befinden?
 - Höchstens 5 Werkstücke befinden?
 - Die Station leer ist?
- d) Eine zusätzliche Vorbearbeitungsstation hat $\lambda=5$ und $\mu=7$. Analysieren Sie diese Station bezüglich Auslastung, Bestand und Durchlaufzeit.

Lösung:

a) Produktionsrate und Ankunftsraten:

Für $\lambda_1 = 2$:

- Produktionsrate: $X = \min\{\lambda_1, \mu_1, \mu_2, \mu_3, \mu_4\} = \min\{2, 3, 3, 4, 3\} = 2$ Stück/h
- Ankunftsraten: $\lambda_1 = 2$, $\lambda_2 = \min\{2, 3\} = 2$, $\lambda_3 = \min\{2, 3\} = 2$, $\lambda_4 = \min\{2, 4\} = 2$

Für $\lambda_1 = 3$:

- Produktionsrate: $X = \min\{3, 3, 3, 4, 3\} = 3 \text{ Stück/h}$
- Ankunftsraten: $\lambda_1 = 3$, $\lambda_2 = \min\{3,3\} = 3$, $\lambda_3 = \min\{3,3\} = 3$, $\lambda_4 = \min\{3,4\} = 3$
- b) Kenngrößen für beide Szenarien:

Szenario 1: $\lambda_1=2$

Auslastungen:

- $\rho_1 = \frac{2}{3} = 0,667$
- $\rho_2 = \frac{2}{3} = 0,667$
- $\rho_3 = \frac{3}{4} = 0,500$
- $\rho_4 = \frac{2}{3} = 0,667$
- Durchschnitt: $\bar{\rho}=0,625$

Mittlerer Bestand:

- $\begin{array}{l} \bullet \ \, L_1 = \frac{0.667}{1-0.667} = 2,00 \; \text{Stück} \\ \bullet \ \, L_2 = \frac{0.667}{1-0.667} = 2,00 \; \text{Stück} \\ \bullet \ \, L_3 = \frac{0.500}{1-0.500} = 1,00 \; \text{Stück} \\ \bullet \ \, L_4 = \frac{0.667}{1-0.667} = 2,00 \; \text{Stück} \\ \end{array}$
- Gesamt: L = 7,00 Stück

Mittlere Durchlaufzeit (Little's Gesetz: $W = L/\lambda$):

- $\begin{array}{ll} \bullet \ \, W_1 = \frac{2,00}{2} = 1,00 \; \mathrm{h} \\ \bullet \ \, W_2 = \frac{2,00}{2} = 1,00 \; \mathrm{h} \\ \bullet \ \, W_3 = \frac{1,00}{2} = 0,50 \; \mathrm{h} \end{array}$
- $W_4 = \frac{2,00}{2} = 1,00 \text{ h}$
- Gesamt: W = 3,50 h

Szenario 2: $\lambda_1 = 3$

Auslastungen:

- $\rho_1=\rho_2=\rho_4=\frac{3}{3}=1,000$ \rightarrow Grenzfall! $\rho_3=\frac{3}{4}=0,750$

Das System arbeitet am Limit, Die Stationen 1, 2 und 4 haben 100% Auslastung, was

• **Rear to Pititing Grist State Of Reference of Participant State Of Participant Of Participant**

Aufgabe 2 - Fließbandabstimmung bei der Smartphone-Montage

Ein Elektronikhersteller plant eine neue Montagelinie für Smartphones. Pro 8-Stunden-Schicht sollen 48 Geräte montiert werden. Die Montage besteht aus 10 Arbeitselementen mit folgenden Beziehungen:

Arbeitselemente und Elementzeiten:

Vorranggraph:

$$A(5) \longrightarrow D(4) \longrightarrow G(4) \longrightarrow J(5)$$

$$E(8) \longrightarrow H(5) \longrightarrow J$$

$$B(3) \nearrow J$$

$$C(6) \longrightarrow F(3) \longrightarrow I(6) \longrightarrow J$$

- a) Bestimmen Sie die Taktzeit für die geforderte Produktionsrate.
- b) Berechnen Sie die theoretisch minimale Anzahl an Stationen. Wie viele Stationen werden maximal benötigt?
- c) Führen Sie eine Fließbandabstimmung mit der Heuristik "Längste Elementzeit zuerst" durch.
- d) Berechnen Sie den Bandwirkungsgrad Ihrer Lösung.

Caution

Lösung:

- a) Taktzeit:
- Verfügbare Zeit: $T=8~{
 m h} \times 60~{
 m min/h} = 480~{
 m min}$
- Produktionsrate: 48 Stück/Schicht
- Taktzeit: $C=\frac{480}{48}=10$ min/Stück
- b) Stationenanzahl:
- Theoretisches Minimum: $M_{\min} = \lceil \frac{49}{10} \rceil = 5$ Stationen
- Maximum: $M_{\rm max}=10$ Stationen (ein Element pro Station)
- c) Fließbandabstimmung (Längste Elementzeit zuerst):

Prioritätsliste: E(8), C(6), I(6), A(5), H(5), J(5), D(4), G(4), B(3), F(3) Wichtig: Es werden nur Elemente zugeordnet, deren Vorgänger bereits zugeordnet sind!

Sta- tion	Verfügbare Ele mente	- Gewähltes Ele- ment	Ele- mentzeit	Station- szeit	Restzeit
1	A, B, C	С	6	6	4
	A, B	В	3	9	1
	Α	-	-	9	1
П	A, F	Α	5	5	5
	F, D, E	E (längste)	8	-	-
		$\begin{array}{c} E passt nicht \\ \longrightarrow F \end{array}$	3	8	2
	D	-	-	8	2
III	D, E, I	Е	8	8	2
	D, I	-	-	8	2
IV	D, I, H	I	6	6	4
	D, H	D	4	10	0
V	H, G	Н	5	5	5
	G	G	4	9	1
	J	-	-	9	1
VI	J	J	5	5	5

Ergebnis: 6 Stationen benötigt

Hinweis zur Optimalität: Das theoretische Minimum von 5 Stationen ($_{\Gamma}49/10_{7}$) ist aufgrund der Vorrangbeziehungen und Elementzeiten nicht erreichbar. Die gefundene Lösung mit 6 Stationen ist für diese Heuristik gut, muss aber nicht global optimal sein. Andere Heuristiken könnten möglicherweise 5 Stationen erreichen.

d) Bandwirkungsgrad:

Aufgabe 3 - Leistungsanalyse eines Fließproduktionssystems

Eine Elektronikfertigung für Leiterplatten besteht aus 5 aufeinanderfolgenden Bearbeitungsstationen. Die erste Station erhält Werkstücke mit einer Rate von $\lambda=0,08$ Leiterplatten pro Minute. Alle Stationen haben eine mittlere Bearbeitungszeit von b=11 Minuten pro Leiterplatte. Die Bearbeitungszeiten sind exponentialverteilt, und zwischen den Stationen befinden sich unbeschränkte Puffer.

- a) Berechnen Sie für jede Station:
 - Die Bearbeitungsrate μ
 - Die Auslastung ρ
 - ullet Den mittleren Bestand L
 - Die mittlere Durchlaufzeit W
- b) Bestimmen Sie für das Gesamtsystem:
 - Die Produktionsrate
 - Den Gesamtbestand
 - Die Gesamtdurchlaufzeit
- c) Für Station 3: Mit welcher Wahrscheinlichkeit
 - Ist die Station leer?
 - Befinden sich genau 3 Leiterplatten an der Station?
 - Befinden sich 3 oder weniger Leiterplatten an der Station?
 - Befinden sich mehr als 10 Leiterplatten an der Station?

Caution

Lösung:

a) Stationskenngrößen:

Für alle Stationen m = 1, ..., 5:

- Bearbeitungsrate: $\mu_m = \frac{1}{b_m} = \frac{1}{11} = 0,091$ Leiterplatten/min
- Ankunftsrate: $\lambda_m = \min\{\lambda_{m-1}, \mu_{m-1}\} = 0,08 \, (\text{da} \, 0,08 < 0,091 \, \text{für alle Stationen})$ Auslastung: $\rho_m = \frac{\lambda_m}{\mu_m} = \frac{0,08}{0,091} = 0,88$ Mittlerer Bestand: $L_m = \frac{\rho_m}{1-\rho_m} = \frac{0,88}{0,12} = 7,33 \, \text{Leiterplatten}$ Mittlere Durchlaufzeit: $W_m = \frac{L_m}{\lambda_m} = \frac{7,33}{0,08} = 91,67 \, \text{min}$

- b) Gesamtsystem:
- Produktionsrate: $X = \min\{\lambda, \mu_1, ..., \mu_5\} = 0,08$ Leiterplatten/min
- Gesamtbestand: $L=\sum_{m=1}^5L_m=5\times 7, 33=36,67$ Leiterplatten Gesamtdurchlaufzeit: $W=\sum_{m=1}^5W_m=5\times 91,67=458,33$ min
- c) Wahrscheinlichkeiten für Station 3:

Mit $\rho_3 = 0,88$ und $P[N=n] = (1-\rho) \cdot \rho^n$:

- Station leer: P[N=0] = 1 0.88 = 0.12 (12%)
- Genau 3 Leiterplatten: $P[N=3] = 0, 12 \cdot 0, 88^3 = 0, 12 \cdot 0, 681 = 0, 082$ (8,2%)
- 3 oder weniger: $P[N \le 3] = 0,401 \text{ (40,1\%)}$
- Mehr als 10: $P[N>10]=\rho^{11}=0,88^{11}=0,314$ (31,4%)

Aufgabe 4 - Starving und Blocking

Ein Produktionssystem besteht aus drei Stationen mit beschränkten Puffern:

```
[Lager] → Station 1 → [Puffer 1: 3 Plätze] → Station 2 → [Puffer 2: 2 Plätze]
→ Station 3 → [Fertigwarenlager]
```

Die Bearbeitungszeiten sind deterministisch: $b_1 = 4$ min, $b_2 = 5$ min, $b_3 = 3$ min.

- a) Erklären Sie die Begriffe "Starving" und "Blocking" im Kontext dieses Systems.
- b) Identifizieren Sie mögliche Starving- und Blocking-Situationen in diesem System.
- c) Welche Station ist der Engpass? Wie wirkt sich das auf die anderen Stationen aus?
- d) Schlagen Sie zwei Maßnahmen zur Verbesserung der Systemleistung vor.

O Caution

Lösung:

a) Begriffserklärungen:

Starving (Aushungern): Eine Station kann nicht arbeiten, weil der vorgelagerte Puffer leer ist und kein zu bearbeitendes Werkstück verfügbar ist.

Blocking (Blockierung): Eine Station kann nicht arbeiten, obwohl sie ein Werkstück fertiggestellt hat, weil der nachgelagerte Puffer voll ist und das fertige Werkstück nicht weitergegeben werden kann.

b) Mögliche Situationen:

Starving:

- Station 2 hungert aus, wenn Puffer 1 leer ist und Station 1 noch arbeitet
- Station 3 hungert aus, wenn Puffer 2 leer ist und Station 2 noch arbeitet

Blocking:

- Station 1 wird blockiert, wenn Puffer 1 voll ist (3 Werkstücke) und Station 2 noch arbeitet
- Station 2 wird blockiert, wenn Puffer 2 voll ist (2 Werkstücke) und Station 3 noch arbeitet

c) Engpassanalyse:

Station 2 ist der Engpass mit der längsten Bearbeitungszeit (5 min).

Auswirkungen:

- Station 1 (schneller als Station 2): Wird blockiert, da Puffer 1 sich füllt
- Station 3 (schneller als Station 2): Hungert aus, da Station 2 nicht schnell genug liefert

d) Verbesserungsmaßnahmen:

- Parallelstation zu Station 2 hinzufügen
- Prozessverbesserung bei Station 2 zur Reduzierung von \boldsymbol{b}_2
- Ziel: Engpass eliminieren und Systemleistung erhöhen