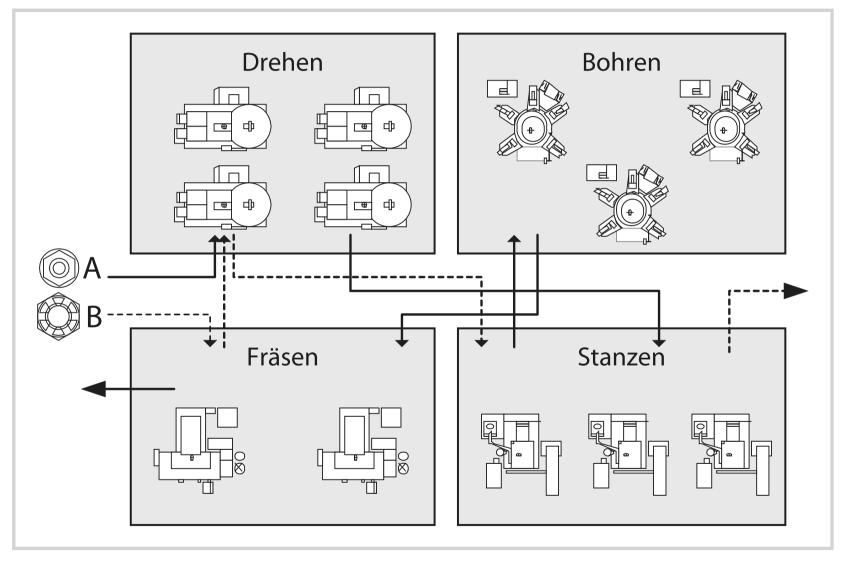


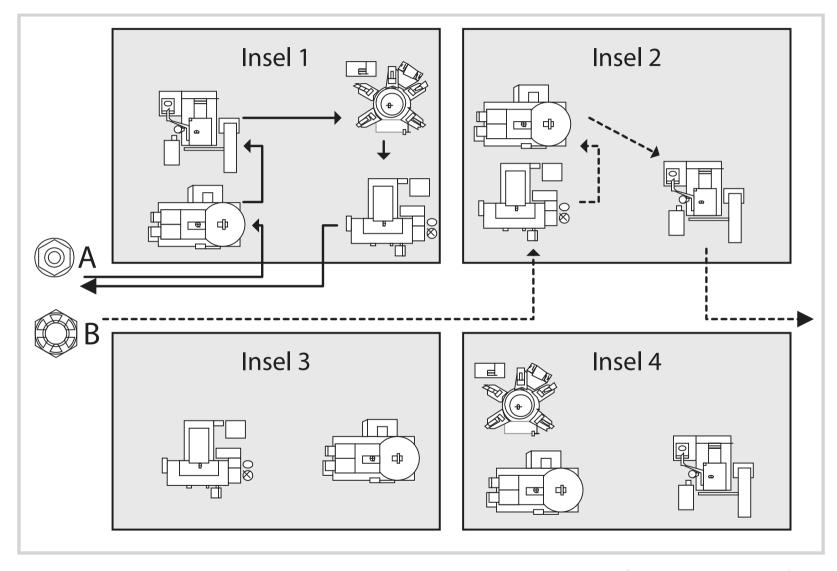
Kapazitätsplanung bei Zentrenproduktion

Materialfluss bei Werkstattproduktion:



(Quelle: Günther/Tempelmeier (2012))

Materialfluss bei Inselproduktion:



(Quelle: Günther/Tempelmeier (2012))

Vorteile

Vorteile

- ▶ kurze Transportwege und -zeiten, geringer Transportkapazitätsbedarf
- geringe Umrüstzeiten
- ▶ niedrige Losgrößen, geringe Lagerbestände, kurze Durchlaufzeiten
- ▶ hohe Flexibilität
- einfache Produktionssteuerung
- Motivation
- geringes Investitionsvolumen bei Produktion mit konventioneller Technologie

Planungsschritte:

- ► Identifizierung von Erzeugnisfamilien
- Auswahl der Arbeitssysteme
- ► Auswahl des Planungs- und Steuerungssystems
- Auswahl, Schulung und Motivation der Mitarbeiter

Identifizierung von Erzeugnisfamilien

	E1	E2	E3	E4	E5	E6
M1			X		X	
M2		X	X			
M3	X			X		
M4		X	X		X	
M5	X			X		X

Identifizierung von Erzeugnisfamilien

	E1	E2	E3	E4	E5	E6
M1			X		X	
M2		X	X			
M3	X			X		
M4		X	X		X	
M5	X			X		X

	M5	М3	M4	M2	M1
E1	X	X			
E4	X	X			
E6	X				
E3			X	X	X
E2			X	X	
E5			X		X

Die trennscharfe Identifizierung von Erzeugnisfamilien gelingt nicht immer.

Beispiel Erzeugnisfamilienidentifikation und Inselbildung

	E1	E2	E3	E4
Fräsen	X	X		
Drehen	X		X	
Bohren	X		X	
Entgraten		X		X
Waschen		X		X

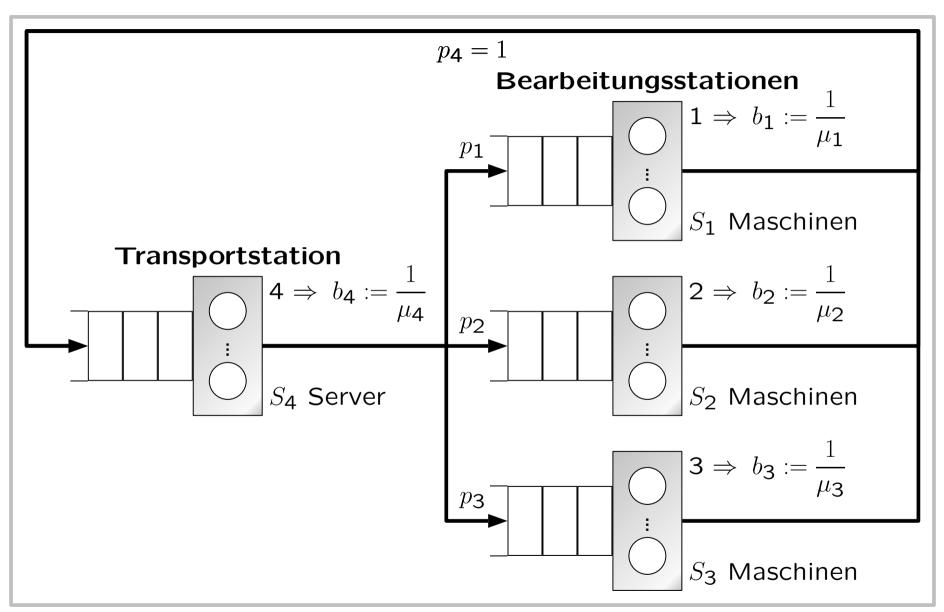
- Produkte

 - ▶ Produktionsmengen der einzelnen Produkte

- Produkte
- Komponenten
 - > Art und Anzahl der einzusetzenden Maschinen
 - ▷ Art und Anzahl der Be- und Entladestationen (Spannplätze)
 - Art und Kapazität der Transportsysteme für Werkstücke und Werkzeuge
 - ▷ Art und Anzahl der Pufferplätze und der Zwischenlager
 - ▶ Art und Kapazität des Werkzeugversorgungssystems
 - ▷ Art und Anzahl der benötigten Werkstückträger (Paletten) und Vorrichtungen

- ► Produkte
- ► Komponenten
- ► Strukturen

 - □ Umfang und Qualifikation des Bedienpersonals



(vgl. Günther/Tempelmeier (2012))

Leistungsanalyse mit

- analytischen Methoden (Warteschlangentheorie)
- ► Simulation

Leistungsanalyse mit

- analytischen Methoden (Warteschlangentheorie)
- ► Simulation
- ▶ Praxisansatz: "Statische Analyse"
 Annahme: Der Engpass ist zu 100 % ausgelastet.

Leistungsanalyse mit

- analytischen Methoden (Warteschlangentheorie)
- ► Simulation
- Praxisansatz: "Statische Analyse" Annahme: Der Engpass ist zu 100 % ausgelastet. Datenaufbereitung:
 - \triangleright Routing-Wahrscheinlichkeiten zur Station m: p_m
 - \triangleright mittlere Bearbeitungszeiten an Station m: b_m
 - \triangleright Anzahl Server (Maschinen) an Station m: S_m

Leistungsanalyse mit

- analytischen Methoden (Warteschlangentheorie)
- Simulation
- Praxisansatz: "Statische Analyse" Annahme: Der Engpass ist zu 100 % ausgelastet. Datenaufbereitung:
 - \triangleright Routing-Wahrscheinlichkeiten zur Station m: p_m
 - hd mittlere Bearbeitungszeiten an Station m: b_m
 - \triangleright Anzahl Server (Maschinen) an Station m: S_m

Engpass: Station mit der größten Arbeitslast $(p_m \cdot b_m)$ pro Server

Engpass
$$e = \arg\max_{m} \left\{ \frac{p_m \cdot b_m}{S_m} \right\}$$

Leistungsanalyse mit

- analytischen Methoden (Warteschlangentheorie)
- Simulation
- Praxisansatz: "Statische Analyse" Annahme: Der Engpass ist zu 100 % ausgelastet. Datenaufbereitung:
 - \triangleright Routing-Wahrscheinlichkeiten zur Station m: p_m
 - hd mittlere Bearbeitungszeiten an Station m: b_m
 - \triangleright Anzahl Server (Maschinen) an Station m: S_m

Engpass: Station mit der größten Arbeitslast $(p_m \cdot b_m)$ pro Server

Engpass
$$e = \arg\max_{m} \left\{ \frac{p_m \cdot b_m}{S_m} \right\}$$

$$\frac{X_m}{X_e} = \frac{p_m}{p_e} \iff X_m = \frac{p_m}{p_e} \cdot X_e$$

Beispiel "Statische" Leistungsanalyse bei einem FFS

- ightharpoonup Routing-Wahrscheinlichkeiten zur Station m: p_m
- ightharpoonup mittlere Bearbeitungszeiten an Station m: b_m
- ▶ Anzahl Server (Maschinen) an Station m: S_m

Engpass: Station mit der größten Arbeitslast $(p_m \cdot b_m)$ pro Server

Engpass
$$e = \arg\max_{m} \left\{ \frac{p_m \cdot b_m}{S_m} \right\}$$

$$\frac{X_m}{X_e} = \frac{p_m}{p_e} \iff X_m = \frac{p_m}{p_e} \cdot X_e \text{ mit } X_e = \frac{S_e}{b_e}$$

Beispiel "Statische" Leistungsanalyse bei einem FFS

- ightharpoonup Routing-Wahrscheinlichkeiten zur Station m: p_m
- ightharpoonup mittlere Bearbeitungszeiten an Station m: b_m
- ightharpoonup Anzahl Server (Maschinen) an Station m: S_m

Engpass: Station mit der größten Arbeitslast $(p_m \cdot b_m)$ pro Server

Engpass
$$e = \arg\max_{m} \left\{ \frac{p_m \cdot b_m}{S_m} \right\}$$

$$\frac{X_m}{X_e} = \frac{p_m}{p_e} \iff X_m = \frac{p_m}{p_e} \cdot X_e \text{ mit } X_e = \frac{S_e}{b_e}$$

	m	S_m	b_m	p_m
Station 1	1	1	90.00	0.5
Station 2	2	1	295.67	0.1
Station 3	3	1	193.33	0.4
Transport	4	1	5.90	1.0

Beispiel "Statische" Leistungsanalyse bei einem FFS

- ightharpoonup Routing-Wahrscheinlichkeiten zur Station m: p_m
- ightharpoonup mittlere Bearbeitungszeiten an Station m: b_m
- ightharpoonup Anzahl Server (Maschinen) an Station m: S_m

Engpass: Station mit der größten Arbeitslast $(p_m \cdot b_m)$ pro Server

Engpass
$$e = \arg\max_{m} \left\{ \frac{p_m \cdot b_m}{S_m} \right\}$$

$$\frac{X_m}{X_e} = \frac{p_m}{p_e} \iff X_m = \frac{p_m}{p_e} \cdot X_e \text{ mit } X_e = \frac{S_e}{b_e}$$

	m	S_m	b_m	p_m	$w_m = \frac{p_m \cdot b_m}{S_m}$
Station 1	1	1	90.00	0.5	45.000
Station 2	2	1	295.67	0.1	29.567
Station 3	3	1	193.33	0.4	77.332
Transport	4	1	5.90	1.0	5.900

Beispiel "Statische" Leistungsanalyse bei einem FFS

- ightharpoonup Routing-Wahrscheinlichkeiten zur Station m: p_m
- ightharpoonup mittlere Bearbeitungszeiten an Station m: b_m
- ▶ Anzahl Server (Maschinen) an Station m: S_m

Engpass: Station mit der größten Arbeitslast $(p_m \cdot b_m)$ pro Server

Engpass
$$e = \arg\max_{m} \left\{ \frac{p_m \cdot b_m}{S_m} \right\}$$

$$\frac{X_m}{X_e} = \frac{p_m}{p_e} \iff X_m = \frac{p_m}{p_e} \cdot X_e \text{ mit } X_e = \frac{S_e}{b_e} \text{ und } U_m = \frac{b_m \cdot X_m}{S_m}$$

	m	S_m	b_m	p_m	$w_m = \frac{p_m \cdot b_m}{S_m}$	\widehat{X}_m	\widehat{U}_m
Station 1	1	1	90.00	0.5		0.006466	
Station 2	2	1	295.67	0.1	29.567	0.001293	38.23%
Station 3	3	1	193.33	0.4	77.332	0.005172	100.00%
Transport	4	1	5.90	1.0	5.900	0.012931	7.63%

Beispiel CQN-basierte Leistungsanalyse bei einem FFS

- ightharpoonup Routing-Wahrscheinlichkeiten zur Station m: p_m
- ightharpoonup mittlere Bearbeitungszeiten an Station m: b_m
- ▶ Anzahl Server (Maschinen) an Station m: S_m

Engpass: Station mit der größten Arbeitslast $(p_m \cdot b_m)$ pro Server

Engpass
$$e = \arg\max_{m} \left\{ \frac{p_m \cdot b_m}{S_m} \right\}$$

$$\frac{X_m}{X_e} = \frac{p_m}{p_e} \iff X_m = \frac{p_m}{p_e} \cdot X_e \text{ mit } X_e = \frac{S_e}{b_e} \text{ und } U_m = \frac{b_m \cdot X_m}{S_m}$$

	m	S_m	b_m	p_m	$w_m = \frac{p_m \cdot b_m}{S_m}$	\widehat{X}_m	\widehat{U}_m	X_m	U_m
Station 1	1	1	90.00	0.5	45.000	0.006466	58.19%	0.005881	52.93%
Station 2	2	1	295.67	0.1	29.567	0.001293	38.23%	0.001176	34.77%
Station 3	3	1	193.33	0.4	77.332	0.005172	100.00%	0.004704	90.95%
Transport	4	1	5.90	1.0	5.900	0.012931	7.63%	0.011761	6.94%

Qualitätsmanagement

- ▶ ... ist kaufentscheidender Faktor
- ▶ ... ist Wettbewerbsfaktor
- ▶ ... rechtfertigt i. d. R. einen höheren Absatzpreis
- \implies Wertschöpfungsbeitrag

- ▶ ... ist kaufentscheidender Faktor
- ... ist Wettbewerbsfaktor
- ▶ ... rechtfertigt i. d. R. einen höheren Absatzpreis
- ⇒ Wertschöpfungsbeitrag
 - ▶ funktionale Qualität (Gebrauchstauglichkeit, "fitness for use")
 - > ", quality of performance"
 - ▷ "quality of design"

- ... ist kaufentscheidender Faktor
- ... ist Wettbewerbsfaktor
- ▶ ... rechtfertigt i. d. R. einen höheren Absatzpreis
- ⇒ Wertschöpfungsbeitrag
 - ▶ funktionale Qualität (Gebrauchstauglichkeit, "fitness for use")
 - > ", quality of performance"
 - ▷ "quality of design"
 - ▶ fertigungsbezogene Qualität (Ausführungsqualität, Präzision)
 - ▷ "quality of conformance"

- ... ist kaufentscheidender Faktor
- ... ist Wettbewerbsfaktor
- ▶ ... rechtfertigt i. d. R. einen höheren Absatzpreis
- \implies Wertschöpfungsbeitrag
 - ▶ funktionale Qualität (Gebrauchstauglichkeit, "fitness for use")
 - > ", quality of performance"
 - ▷ "quality of design"
 - ► fertigungsbezogene Qualität (Ausführungsqualität, Präzision)
 - ▷ "quality of conformance"
 - ▶ ästhetische Qualität (äußere Gestaltung)

Qualitätskosten

- ► Fehlerverhütungskosten
- ► Prüfkosten
- ► Fehlerfolgekosten

- ► Was? Welche Größen?
 - > Attribute
 - ▶ Variablen

- ▶ Was? Welche Größen?
 - ▶ Attribute
 - ▶ Variablen
- ► Wieviel?

 - - → Fehler erster und zweiter Art

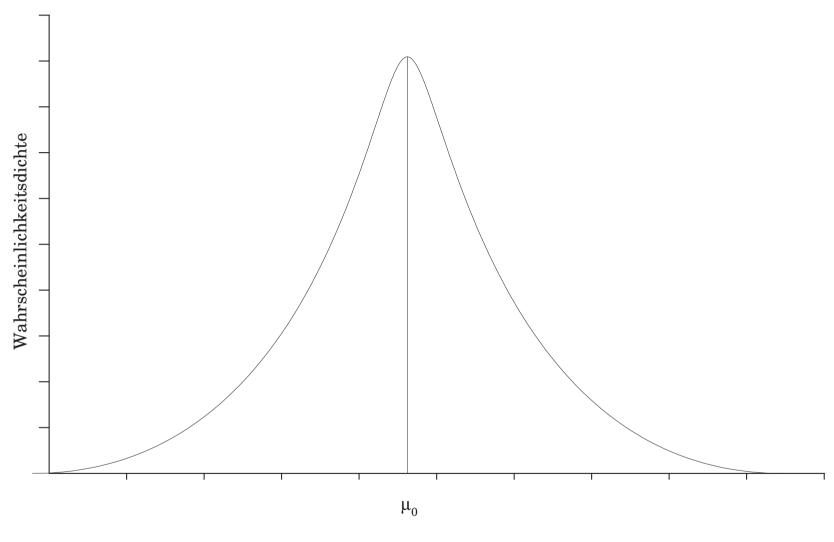
Statistische Qualitätskontrolle

- ▶ Was? Welche Größen?
 - Attribute
 - ▶ Variablen
- ► Wieviel?

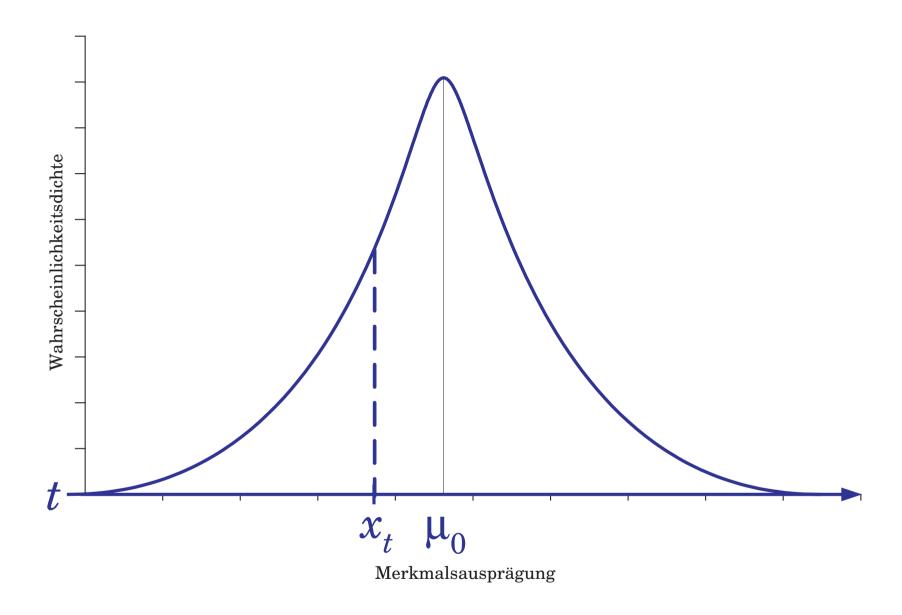
 - - → Fehler erster und zweiter Art
- Anwendungsbereiche

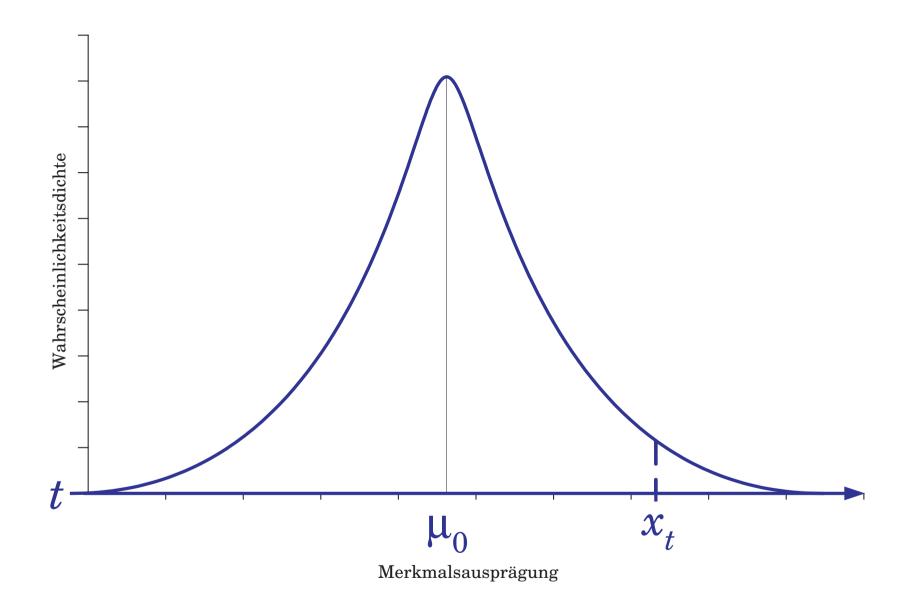
 - ▶ Prozesskontrolle

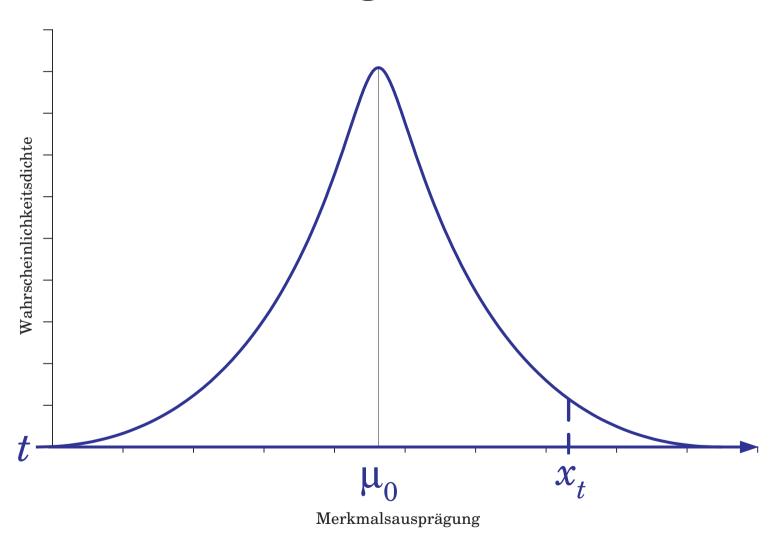
Statistische Prozesskontrolle

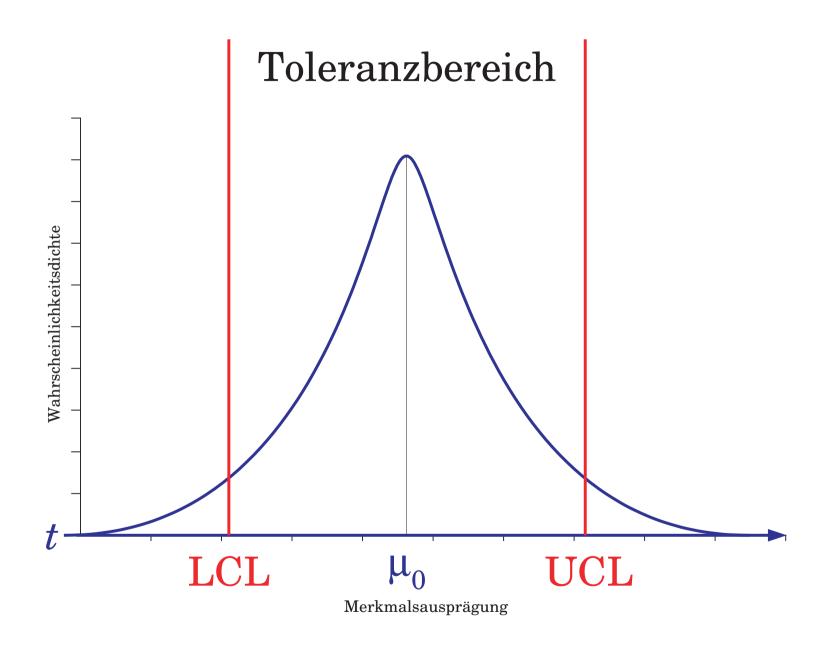


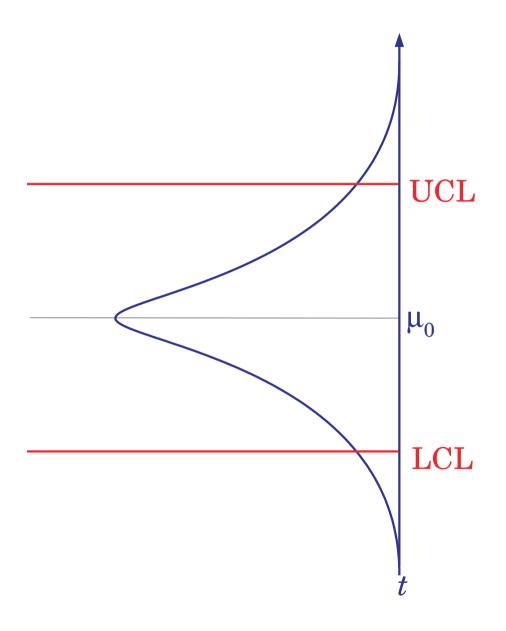
Merkmalsausprägung

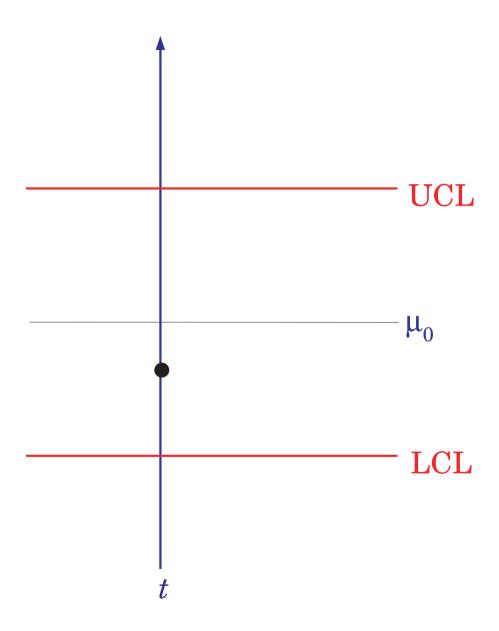


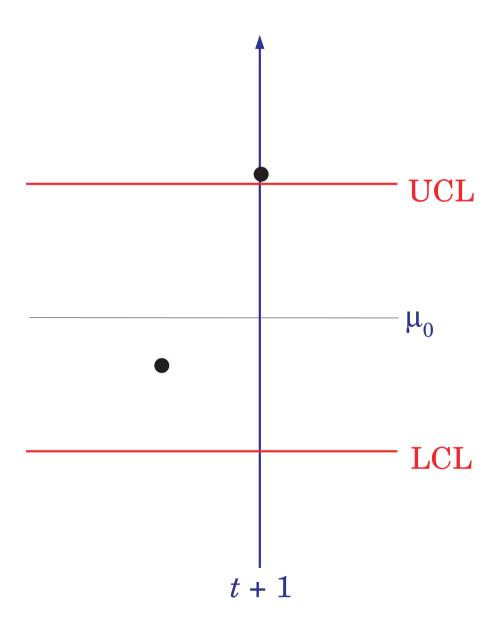












Kontrollgrenzen

$$UCL = \mu_0 + z(n, \alpha) \cdot \sigma_0$$

$$LCL = \mu_0 - z(n, \alpha) \cdot \sigma_0$$

Kontrollgrenzen

$$UCL = \mu_0 + z(n, \alpha) \cdot \sigma_0$$
$$LCL = \mu_0 - z(n, \alpha) \cdot \sigma_0$$

Bestimmung von μ_0

$$x_t = \frac{1}{n} \sum_{i=1}^{n} x_{it}$$

Stichprobenmittelwert

$$x = \frac{1}{T} \sum_{t=1}^{T} x_t = \widehat{\mu}_0$$

Mittelwert der Stichprobenmittelwerte

Kontrollgrenzen

$$UCL = \mu_0 + z(n, \alpha) \cdot \sigma_0$$

$$LCL = \mu_0 - z(n, \alpha) \cdot \sigma_0$$

Bestimmung von σ_0 — Standardabweichung

$$s_t = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{it} - x_t)^2}$$

Stichprobenstandardabweichung

$$s = \frac{1}{T} \sum_{t=1}^{T} s_t = \widehat{\sigma}_0$$

Mittelwert der Stichprobenstandardabweichungen

Kontrollgrenzen

$$UCL = \mu_0 + z(n, \alpha) \cdot \sigma_0$$
$$LCL = \mu_0 - z(n, \alpha) \cdot \sigma_0$$

Bestimmung von σ_0 — Spannweite

$$R_t = \max\{x_{1t}, x_{2t}, \dots, x_{nt}\} - \min\{x_{1t}, x_{2t}, \dots, x_{nt}\}$$

Stichprobenspannweite

$$R = \frac{1}{T} \sum_{t=1}^{T} R_t = \widehat{\sigma}_0$$

Mittelwert der Stichprobenspannweiten

Kontrollgrenzen

$$\begin{aligned} \mathsf{UCL} &= \widehat{\mu}_0 + z(n, \alpha) \cdot \widehat{\sigma}_0 \\ \mathsf{LCL} &= \widehat{\mu}_0 - z(n, \alpha) \cdot \widehat{\sigma}_0 \end{aligned}$$

Bestimmung von $z(n, \alpha)$

- ▶ bei Verwendung von Standardabweichungen: $z = \frac{t_{n-1,1-\frac{\alpha}{2}}}{\sqrt{n}}$
- ▶ meistens jedoch: $z = \frac{3}{\sqrt{n}}$
- ightharpoonup bei Verwendung von Spannweiten: tabellierte Werte A(n)
- ▶ häufig werden A(5) = 0.577 und A(9) = 0.337 verwendet

Beispiel Qualitätssicherung: Statistische Prozesskontrolle

Die LowCal Kartoffelchips.com GmbH produziert hauchdünne, kalorienreduzierte Kartoffelchips. Wenn alles in Ordnung ist, dann werden Chips
mit einer durchschnittlichen Stärke von 0.500 Millimetern geschnitten,
wobei die durchschnittliche Spannweite der Chipsstärke in der Vergangenheit 0.100 Millimeter betragen hat. Die folgende Tabelle zeigt die
Ergebnisse aus drei neuen Stichproben (Stichprobenumfang n=9), die
aus dem laufenden Prozess entnommen wurden und die jetzt beurteilt
werden sollen:

Stichprobe	Stichprobenmittelwert der Chipsstärke
1	0.520
2	0.460
3	0.490

Beispiel Qualitätssicherung: Statistische Prozesskontrolle

Die LowCal Kartoffelchips.com GmbH produziert hauchdünne, kalorienreduzierte Kartoffelchips. Wenn alles in Ordnung ist, dann werden Chips
mit einer durchschnittlichen Stärke von 0.500 Millimetern geschnitten,
wobei die durchschnittliche Spannweite der Chipsstärke in der Vergangenheit 0.100 Millimeter betragen hat. Die folgende Tabelle zeigt die
Ergebnisse aus drei neuen Stichproben (Stichprobenumfang n=9), die
aus dem laufenden Prozess entnommen wurden und die jetzt beurteilt
werden sollen:

Stichprobe	Stichprobenmittelwert der Chipsstärke
1	0.520
2	0.460
3	0.490

$$A(n=9) = 0.337$$

Beispiel Qualitätssicherung: Statistische Prozesskontrolle

Die LowCal Kartoffelchips.com GmbH produziert hauchdünne, kalorienreduzierte Kartoffelchips. Wenn alles in Ordnung ist, dann werden Chips
mit einer durchschnittlichen Stärke von 0.500 Millimetern geschnitten,
wobei die durchschnittliche Spannweite der Chipsstärke in der Vergangenheit 0.100 Millimeter betragen hat. Die folgende Tabelle zeigt die
Ergebnisse aus drei neuen Stichproben (Stichprobenumfang n=9), die
aus dem laufenden Prozess entnommen wurden und die jetzt beurteilt
werden sollen:

Stichprobe	Stichprobenmittelwert der Chipsstärke
1	0.520
2	0.460
3	0.490

$$A(n=9) = 0.337$$

$$LCL = x - A \cdot R$$

Beispiel Qualitätssicherung: Statistische Prozesskontrolle

Die LowCal Kartoffelchips.com GmbH produziert hauchdünne, kalorienreduzierte Kartoffelchips. Wenn alles in Ordnung ist, dann werden Chips
mit einer durchschnittlichen Stärke von 0.500 Millimetern geschnitten,
wobei die durchschnittliche Spannweite der Chipsstärke in der Vergangenheit 0.100 Millimeter betragen hat. Die folgende Tabelle zeigt die
Ergebnisse aus drei neuen Stichproben (Stichprobenumfang n=9), die
aus dem laufenden Prozess entnommen wurden und die jetzt beurteilt
werden sollen:

Stichprobe	Stichprobenmittelwert der Chipsstärke
1	0.520
2	0.460
3	0.490

$$A(n=9) = 0.337$$

$$LCL = x - A \cdot R = 0.5 - 0.337 \cdot 0.1 = 0.4663$$

Beispiel Qualitätssicherung: Statistische Prozesskontrolle

Die LowCal Kartoffelchips.com GmbH produziert hauchdünne, kalorienreduzierte Kartoffelchips. Wenn alles in Ordnung ist, dann werden Chips
mit einer durchschnittlichen Stärke von 0.500 Millimetern geschnitten,
wobei die durchschnittliche Spannweite der Chipsstärke in der Vergangenheit 0.100 Millimeter betragen hat. Die folgende Tabelle zeigt die
Ergebnisse aus drei neuen Stichproben (Stichprobenumfang n=9), die
aus dem laufenden Prozess entnommen wurden und die jetzt beurteilt
werden sollen:

Stichprobe	Stichprobenmittelwert der Chipsstärke
1	0.520
2	0.460
3	0.490

$$A(n=9) = 0.337$$

$$LCL = x - A \cdot R = 0.5 - 0.337 \cdot 0.1 = 0.4663$$

$$UCL = x + A \cdot R = 0.5 + 0.337 \cdot 0.1 = 0.5337$$