Practice Worksheet

Transforming Functions

Transformation Patterns & Exam Techniques

Problem 1: Basic Transformation Identification (x)

For each function, identify all transformations from the base function:

a)
$$g(x) = 3\sin(x) - 2$$
 from $f(x) = \sin(x)$

b)
$$h(x) = 2^{x+1} + 3$$
 from $f(x) = 2^x$

c)
$$p(x) = \log_3(x-4)$$
 from $f(x) = \log_3(x)$

d)
$$q(x) = -(x+2)^2$$
 from $f(x) = x^2$

Problem 2: Quick Pattern Recognition (x)

Using the 4-step exam method, analyze the transformation: $g(x) = -3\cos(2x) + 1$ from $f(x) = \cos(x)$

Find: a) All transformations b) The new period c) The amplitude d) The range

Problem 3: Angle of Inclination (xx)

A line passes through points A(0,2) and $B(3,2+3\sqrt{3})$.

- a) Find the slope m
- b) Calculate the angle of inclination α with the positive x-axis
- c) Write the equation of the line
- d) Where does this line intersect $y = x^2$?

Problem 4: Multi-Step Transformations (xx)

Starting with $f(x) = \sqrt{x}$, apply these transformations in order: 1. Shift right 1 unit 2. Vertical stretch by factor 2 3. Reflect over x-axis 4. Shift up 3 units

- a) Write the equation after each step
- b) Write the final equation
- c) Find the domain and range
- d) Sketch both original and final functions

Problem 5: Exam-Style Application (xx)

A company's daily production follows:

$$P(t) = 100 + 20\sin\left(\frac{\pi}{6}(t-3)\right)$$

1

where t is hours after 6 AM (so t = 0 at 6 AM).

- a) What is the period of production?
- b) When does maximum production occur?
- c) What is the production range?
- d) When is production exactly 100 units?

Problem 6: Logarithmic Transformations (xx)

Consider $g(x) = 2\log_3(3x) - 1$.

- a) Simplify the expression using logarithm properties
- b) Identify all transformations from $f(x) = \log_3(x)$
- c) Find the domain
- d) Find where q(x) = 3

Problem 7: Synthesis - Multiple Functions (xxx)

The height of a Ferris wheel car is modeled by:

$$h(t) = 25 - 20\cos\left(\frac{\pi}{15}t\right)$$

where h is height in meters and t is time in minutes.

Meanwhile, the number of riders waiting follows:

$$N(t) = 50 \cdot 2^{-t/30}$$

- a) Find the period of the Ferris wheel
- b) What are the minimum and maximum heights?
- c) At what time is the car first at maximum height?
- d) How many riders are waiting when the car first reaches maximum height?
- e) When are there exactly 25 riders waiting?

Problem 8: Comprehensive Transformation Challenge (xxxx)

A company analyzes its profit using the transformed function:

$$P(x) = -400 \left(\frac{1}{2}\right)^{x-3} + 800$$

where x is years since launch and P is profit in thousands.

- a) Identify the base function and list all transformations applied
- b) Find the horizontal asymptote and explain its business meaning
- c) Calculate the profit at launch (x = 0)
- d) When does the profit equal 600 thousand?
- e) Sketch the function showing key features
- f) The company wants to model seasonal variation by adding $100\sin(\pi x)$. What would be the new profit range after 3 years?