Powers with Integer Exponents

Doubling with a Look into the Past

Powers with Integer Exponents

Example: Doubling with a Look into the Past

Starting from our example:

Time (in min.) $= t$	${\sf Number\ of\ Cents}=C$	Powers (new notation)
0	1	2^{0}
1	2	2^1
2	$2 \cdot 2 = 4$	2^2
3	$2 \cdot 2 \cdot 2 = 8$	2^3

Let's take a look into the past. If I have one cent at starting time "0", how many cents did I have one minute ago, two minutes ago, ...?

$ \ \text{Time (in min.)} = t $	${\sf Number\ of\ Cents}=C$	Powers (new notation)
-4 (4 minutes ago)	$\frac{1}{2^4} = \frac{1}{16}$	2^{-4}
-3 (3 minutes ago)	$\frac{1}{2^3} = \frac{1}{8}$	2^{-3}
-2 (2 minutes ago)	$\frac{1}{2^2} = \frac{1}{4}$	2^{-2}
-1 (1 minute ago)	$\frac{1}{2^1} = \frac{1}{2}$	2^{-1}
0	1	2^{0}
1	2	2^1
2	$2 \cdot 2 = 4$	2^2
3	$2 \cdot 2 \cdot 2 = 8$	2^3

i Note

To describe growth uniformly, one defines:

$$2^{-1} = \frac{1}{2^1}; \quad 2^{-2} = \frac{1}{2^2}; \quad 2^{-3} = \frac{1}{2^3}, \dots$$

Definition: Powers with Negative Integer Exponents

For all rational (also real) numbers $a \neq 0$ and natural numbers $n \in \mathbb{N}$:

$$a^{-n} = \frac{1}{a^n}$$

Warning

Note: $a \neq 0$, because division by zero is not allowed!

Exercises (without calculator)

1) Write as a power of ten (with negative exponents)

a)
$$0.1 = \frac{1}{10} = \frac{1}{10^1} = 10^{-1}$$

b)
$$0.01 =$$

c)
$$0.001 =$$

2) Write as a decimal number without powers

a)
$$7 \cdot 10^{-3} = 7 \cdot 0.001 = 0.007$$

b)
$$1.2 \cdot 10^{-4} =$$

c)
$$10^{-7} =$$

3) Write as a fraction without powers

a)
$$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$

b) $(\frac{2}{5})^{-3} =$
c) $(\sqrt{2})^{-2} =$
d) $(-4)^{-3} =$

b)
$$(\frac{2}{5})^{-3} =$$

c)
$$(\sqrt[3]{2})^{-2} =$$

d)
$$(-4)^{-3} =$$