

Tasks 06-05 - Economic Applications & Integration by Parts

Section 06: Integral Calculus

Problem 1: Consumer Surplus (x)

For each demand function and equilibrium price, calculate the consumer surplus:

- a) $D(q) = 100 - 2q$, equilibrium at $q^* = 20, p^* = 60$
- b) $D(q) = 80 - q$, equilibrium at $q^* = 30, p^* = 50$
- c) $D(q) = 200 - 5q$, equilibrium at $q^* = 24, p^* = 80$
- d) $D(q) = 150 - 3q$, equilibrium at $q^* = 25, p^* = 75$

Problem 2: Producer Surplus (x)

For each supply function and equilibrium price, calculate the producer surplus:

- a) $S(q) = 10 + q$, equilibrium at $q^* = 20, p^* = 30$
- b) $S(q) = 5 + 2q$, equilibrium at $q^* = 15, p^* = 35$
- c) $S(q) = 20 + 0.5q$, equilibrium at $q^* = 40, p^* = 40$
- d) $S(q) = 15 + 3q$, equilibrium at $q^* = 10, p^* = 45$

Problem 3: Complete Market Analysis (xx)

For each market, find equilibrium, then calculate CS, PS, and total surplus:

- a) $D(q) = 120 - 4q$ and $S(q) = 20 + 2q$
- b) $D(q) = 90 - 3q$ and $S(q) = 30 + q$
- c) $D(q) = 200 - 2q$ and $S(q) = 40 + 2q$

Problem 4: Average Value (xx)

Find the average value of each function on the given interval:

- a) $f(x) = 3x^2$ on $[0, 2]$
- b) $f(x) = x^3 - x$ on $[0, 2]$
- c) $f(x) = e^x$ on $[0, 3]$
- d) $f(x) = \frac{1}{x}$ on $[1, e]$
- e) $f(x) = 4 - x^2$ on $[-2, 2]$

Problem 5: Revenue and Cost Accumulation (xx)

- A company's marginal revenue is $MR(x) = 150 - 3x$ EUR/unit. Find the additional revenue from increasing production from 20 to 40 units.
- Marginal cost is $MC(x) = 20 + 0.5x$ EUR/unit. Find the total cost of producing the first 50 units (assuming no fixed costs).
- If $MR(x) = 100 - 2x$ and $MC(x) = 10 + x$, find the profit-maximizing quantity and the total profit earned up to that quantity (starting from 0).

Problem 6: Business Applications (xx)

- A factory's production rate is $P(t) = 120 - 4t$ units per hour, where t is hours into the shift. Find the average production rate over an 8-hour shift.
- Daily sales revenue follows $R(t) = 500 + 100 \sin\left(\frac{\pi t}{12}\right)$ EUR, where t is hours after midnight. Find the total revenue from 6 AM to 6 PM (12 hours).
- A machine depreciates at rate $V'(t) = -5000e^{-0.2t}$ EUR per year. Find the total depreciation over the first 5 years.

Problem 7: Profit Rate Analysis (xxx)

A startup's monthly profit rate is $P'(t) = 12t - t^2$ thousand EUR, where t is months after launch.

- During which months is the company profitable (positive profit rate)?
- Find the total profit accumulated from launch until the profit rate first becomes zero.
- Find the month when the instantaneous profit rate is highest, and what is that maximum rate?
- Calculate the average monthly profit rate over the first 12 months.

Problem 8: Basic Integration by Parts (x)

Use integration by parts to evaluate the following integrals. Remember to verify your answers by differentiation.

- $\int x \cdot e^x dx$
- $\int 2x \cdot e^x dx$
- $\int x \cdot e^{-x} dx$
- $\int (x + 1) \cdot e^x dx$
- $\int (x - 2) \cdot e^x dx$
- $\int 5x \cdot e^{2x} dx$

Problem 9: Integration with Logarithms (x)

Use the LIATE rule to determine which function should be u , then integrate.

- a) $\int x \cdot \ln(x) dx$
- b) $\int x^2 \cdot \ln(x) dx$
- c) $\int \ln(x) dx$ (Hint: write as $\int 1 \cdot \ln(x) dx$)
- d) $\int x^3 \cdot \ln(x) dx$

Problem 10: Repeated Integration by Parts (xx)

These integrals require applying integration by parts twice.

- a) $\int x^2 \cdot e^x dx$
- b) $\int x^2 \cdot e^{-x} dx$
- c) $\int x^2 \cdot e^{2x} dx$
- d) $\int (x^2 + x) \cdot e^x dx$

Problem 11: Definite Integrals by Parts (xx)

Evaluate the following definite integrals.

- a) $\int_0^1 x \cdot e^x dx$
- b) $\int_0^2 x \cdot e^{-x} dx$
- c) $\int_1^e x \cdot \ln(x) dx$
- d) $\int_0^1 x^2 \cdot e^x dx$
- e) $\int_0^2 (x + 1) \cdot e^x dx$

Problem 12: Exam-Style Problem - 2025 Format (xx)

Consider the function $f(x) = (x + 1)e^x - 1$.

- a) Find $\int f(x) dx$
- b) Evaluate $\int_0^2 f(x) dx$
- c) Find where $f(x) = 0$ and interpret what this means for the integral.
- d) Sketch the graph of $f(x)$ for $-3 \leq x \leq 2$ and shade the region whose area is computed in part (b).

Problem 13: Exam-Style Problem - 2023 Format (xxx)

Evaluate $\int_0^1 x^2 \cdot e^{-x} dx$.

Show all steps clearly, including:

- a) Setting up integration by parts (identify u and dv)
- b) The first application of integration by parts
- c) The second application of integration by parts
- d) Combining results and evaluating the definite integral
- e) Express your answer in exact form and as a decimal approximation

Problem 14: Business Application - Accumulated Profit (xx)

A company's marginal profit function (rate of profit in thousands of euros per month) is given by:

$$MP(t) = P'(t) = (20 - 2t) \cdot e^{-0.1t}$$

where t is months since product launch.

- a) Find the accumulated profit function $P(t)$, given that at launch ($t = 0$), the initial investment creates a loss of €50,000, so $P(0) = -50$.
- b) Calculate the total profit from month 0 to month 12.
- c) At what time does the marginal profit equal zero? What does this mean for the business?
- d) What is the maximum accumulated profit, and when does it occur?