

Tasks 06-04 - Area Between Curves

Section 06: Integral Calculus

Problem 1: Finding Intersection Points (x)

Find the x-coordinates where the following pairs of functions intersect:

- a) $f(x) = x^2$ and $g(x) = 4$
- b) $f(x) = x + 2$ and $g(x) = x^2$
- c) $f(x) = 6 - x$ and $g(x) = x$
- d) $f(x) = x^2 - 1$ and $g(x) = 3 - x^2$
- e) $f(x) = x^3$ and $g(x) = x$

Problem 2: Determining Upper and Lower Functions (x)

For each interval, determine which function is on top (greater):

- a) $f(x) = 4$ and $g(x) = x^2$ on $[-2, 2]$
- b) $f(x) = x + 2$ and $g(x) = x^2$ on $[-1, 2]$
- c) $f(x) = x$ and $g(x) = x^3$ on $[0, 1]$
- d) $f(x) = \sqrt{x}$ and $g(x) = x^2$ on $[0, 1]$

Problem 3: Basic Area Between Curves (xx)

Find the area enclosed between the given curves:

- a) $f(x) = x + 1$ and $g(x) = x^2 - 1$ from $x = -1$ to $x = 2$
- b) $f(x) = 4 - x^2$ and $g(x) = 0$ (the x-axis)
- c) $f(x) = x^2$ and $g(x) = x$ from $x = 0$ to $x = 1$
- d) $f(x) = 6 - x^2$ and $g(x) = x$

Problem 4: Area with Multiple Regions (xxx)

Find the total area between the curves. Note: the curves may cross, creating multiple regions.

- a) $f(x) = x$ and $g(x) = x^3$ from $x = -1$ to $x = 1$
- b) $f(x) = \sin(x)$ and $g(x) = 0$ from $x = 0$ to $x = 2\pi$
- c) $f(x) = x^2 - 4$ and $g(x) = 4 - x^2$

Problem 5: Supply and Demand Curves (xx)

For a product, the demand curve is $D(q) = 100 - 2q$ and the supply curve is $S(q) = 20 + 3q$, where q is quantity (in hundreds) and prices are in euros.

- Find the equilibrium quantity q^* and price p^* .
- Set up the integral for the area between the demand and supply curves from $q = 0$ to q^* .
- Calculate this area. (This represents total surplus, which we'll study in depth next session.)

Problem 6: Cost and Revenue Functions (xx)

A company's marginal revenue is $MR(x) = 200 - 4x$ and marginal cost is $MC(x) = 40 + 2x$, where x is quantity in thousands.

- Find where marginal revenue equals marginal cost.
- Calculate the area between the MR and MC curves from $x = 0$ to this break-even point.
- Interpret this area in business terms.

Problem 7: Bounded Regions (xx)

Find the area of the region bounded by:

- $y = x^2$, $y = 0$, $x = 1$, and $x = 3$
- $y = \sqrt{x}$, $y = 0$, and $x = 4$
- $y = e^x$, $y = 1$, $x = 0$, and $x = 2$
- $y = x^2$ and $y = 2x$ (find intersection first, then calculate enclosed area)

Problem 8: Application - Profit Over Time (xxx)

A startup's revenue rate is $R'(t) = 50 + 10t$ thousand euros per month and cost rate is $C'(t) = 70 - 2t$ thousand euros per month, where t is time in months.

- At what time does revenue rate equal cost rate (break-even point in rates)?
- Set up and evaluate the integral for total loss during the period when costs exceed revenues.
- Set up and evaluate the integral for total profit during the period from break-even to $t = 10$ months.
- What is the net profit/loss over the first 10 months?