

Practice Tasks - Session 05-06

Optimization & Curve Sketching

Dr. Nikolai Heinrichs & Dr. Tobias Vlček

Part 1: First and Second Derivative Tests

Problem 1: First Derivative Test (xx)

Find all critical points of $f(x) = x^3 - 3x^2 - 9x + 5$ and classify each using the first derivative test.

Problem 2: Second Derivative Test (xx)

Use the second derivative test to classify all critical points of:

$$g(x) = 2x^3 - 9x^2 + 12x - 3$$

Problem 3: When Second Derivative Test Fails (xxx)

For $h(x) = x^4 - 4x^3$:

- Find all critical points.
- Attempt to classify them using the second derivative test.
- For any critical point where the second derivative test fails, use the first derivative test.

Problem 4: Comparing Both Tests (xx)

For $f(x) = x^4 - 8x^2 + 5$:

- Find all critical points.
- Classify them using the second derivative test.
- Verify your classifications using the first derivative test.

Part 2: Global Extrema on Intervals

Problem 5: Finding Absolute Extrema (xx)

Find the absolute maximum and minimum values of $f(x) = x^3 - 6x^2 + 9x + 1$ on the interval $[0, 4]$.

Problem 6: Closed Interval Method (xx)

Find the absolute extrema of $g(x) = \frac{x}{x^2+1}$ on $[-2, 2]$.

Problem 7: Optimization with Constraints (xxx)

A rectangular box with a square base and no top is to have a volume of 32 cubic meters. Find the dimensions that minimize the surface area.

Problem 8: Absolute Extrema with Domain Restrictions (xxx)

Find the absolute extrema of $f(x) = xe^{-x}$ on $[0, 3]$.

(Note: You may use the fact that $(e^{-x})' = -e^{-x}$)

Part 3: Complete Curve Sketching

Problem 9: Sketching a Rational Function (xxx)

Use the 6-step algorithm to sketch $f(x) = \frac{x^2-4}{x}$.

- a) Domain and intercepts
- b) Critical points
- c) Inflection points
- d) Sign charts for f' and f''
- e) Asymptotes
- f) Complete sketch

Problem 10: Sketching a Polynomial (xxx)

Use the 6-step algorithm to sketch $g(x) = x^4 - 4x^3 + 4x^2$.

Problem 11: Challenging Rational Function (xxxx)

Sketch $h(x) = \frac{x^2}{x^2-4}$ using the complete algorithm.

Part 4: Business Optimization

Problem 12: Profit Maximization (xx)

A company's profit function (in thousands of euros) is:

$$P(x) = -x^3 + 12x^2 - 36x + 50$$

where x is production level (in thousands of units).

- a) Find the production level that maximizes profit.
- b) What is the maximum profit?
- c) For what production levels is the company making a profit (i.e., $P(x) > 0$)?

Problem 13: Cost Minimization (xxx)

The average cost per unit for a manufacturer is:

$$\bar{C}(x) = 0.01x^2 - 0.6x + 13 + \frac{50}{x}$$

where x is the number of units produced (in hundreds).

- Find the production level that minimizes average cost.
- What is the minimum average cost?
- Verify that your answer is indeed a minimum.

Problem 14: Revenue Maximization (xx)

A company can sell x thousand units at a price of $p = 100 - 2x$ euros per unit.

- Write the revenue function $R(x)$.
- Find the production level that maximizes revenue.
- What is the maximum revenue?
- What price should be charged to achieve maximum revenue?

Problem 15: Optimization with Constraint (xxxx)

A farmer has 100 meters of fencing and wants to enclose a rectangular area next to a river (so fencing is needed on only three sides).

- Express the area A as a function of the width x perpendicular to the river.
- What dimensions maximize the enclosed area?
- What is the maximum area?

Problem 16: Inventory Optimization (xxxx)

A store sells 1000 units per year of a certain product. The ordering cost is €20 per order, and the holding cost is €5 per unit per year.

The Economic Order Quantity (EOQ) model gives the total annual cost as:

$$C(x) = \frac{1000 \cdot 20}{x} + \frac{x \cdot 5}{2} = \frac{20000}{x} + 2.5x$$

where x is the order size.

- Find the order size that minimizes total cost.
- What is the minimum total annual cost?
- How many orders should be placed per year?

Important:

- Always verify critical points using derivative tests

2. Don't forget to check endpoints when finding global extrema
3. The 6-step algorithm provides a systematic approach to curve sketching
4. Business problems require careful setup of objective functions and constraints
5. Both first and second derivatives provide essential information about function behavior

Exam Preparation:

- Practice the curve sketching algorithm until it becomes automatic
- Master both derivative tests and know when to use each
- Always verify that your critical points are actually maxima or minima!