Session 04-04 - Tasks

Introduction to Trigonometric Functions

Trigonometric Functions - Problem Set

Problem 1: Angle Conversion (x)

Convert between degrees and radians:

- a) Convert 225° to radians
- b) Convert $7\pi/6$ radians to degrees
- c) Convert -120° to radians
- d) Convert $3\pi/4$ radians to degrees

Problem 2: Exact Trigonometric Values (x)

Find the exact values without a calculator:

- a) $sin(\pi/6)$
- b) $cos(\pi/3)$
- c) $tan(\pi/4)$
- d) $sin(3\pi/2)$

Problem 3: Unit Circle Coordinates (xx)

Find the exact coordinates ($\cos \theta$, $\sin \theta$) on the unit circle for:

- a) $\theta = 2\pi/3$
- b) $\theta = 5\pi/4$
- c) $\theta = 11\pi/6$
- d) $\theta = 4\pi/3$

Problem 4: Analyzing Trigonometric Functions (xx)

For each function, find the amplitude, period, and range:

- a) $y = 2\sin(x)$
- b) y = cos(3x)
- c) $y = -3\sin(x/2)$
- d) $y = 4\cos(2x) + 1$

Problem 5: Graphing Transformations (xx)

Sketch one period of each function and identify key features:

- a) $y = \sin(x \pi/4)$
- b) $y = 2\cos(x) 1$
- c) $y = \sin(2x)$
- d) $y = -\cos(x + \pi/2)$

Problem 6: Ferris Wheel Application (xxx)

A Ferris wheel has a radius of 15 meters and its center is 18 meters above ground. It completes one rotation every 3 minutes, starting with a rider at the bottom.

- a) Write a function h(t) for the height of a rider at time t minutes
- b) What is the rider's height after 45 seconds?
- c) What is the rider's height after 1 minute? After 1.5 minutes?
- d) What is the maximum and minimum height?

Problem 7: Temperature Modeling (xxxx)

The daily temperature in a city can be modeled by:

$$T(h) = 20 + 8\sin\Bigl(\frac{\pi}{12}(h-6)\Bigr)$$

where T is temperature in °C and h is the hour of the day $(0 \le h \le 24)$.

- a) What is the period of this function? What does this represent?
- b) At what time does the maximum temperature occur? What is the maximum temperature?
- c) At what time does the minimum temperature occur? What is the minimum temperature?
- d) Find the temperature at 9:00 AM, noon, 3:00 PM, and 9:00 PM.