Tasks 03-03 - Quadratic Functions & Basic Optimization

Section 03: Functions as Business Models

Problem 1: Vertex and Properties (x)

For each quadratic function, find the vertex, axis of symmetry, and determine whether it has a maximum or minimum value:

a)
$$f(x) = x^2 - 6x + 5$$

b)
$$g(x) = -2x^2 + 8x - 3$$

c)
$$h(x) = 3x^2 + 12x + 15$$

d)
$$p(x) = -\frac{1}{2}x^2 + 4x - 6$$

Problem 2: Completing the Square (x)

Convert each quadratic function from standard form to vertex form by completing the square:

a)
$$f(x) = x^2 + 10x + 21$$

b)
$$g(x) = 2x^2 - 8x + 5$$

c)
$$h(x) = -x^2 + 6x - 7$$

d)
$$k(x) = 3x^2 - 18x + 24$$

Problem 3: Revenue Optimization (xx)

A theater company is planning ticket prices for a new show. Market research indicates:

- At €20 per ticket, they expect 500 attendees
- For each €2 increase in price, attendance drops by 20 people
- The theater has a capacity of 600 seats
- a) Express the attendance \boldsymbol{A} as a function of ticket price \boldsymbol{p} .
- b) Write the revenue function R(p).
- c) Find the ticket price that maximizes revenue.
- d) What is the maximum revenue and how many tickets will be sold?
- e) Verify that the optimal solution respects the theater capacity.

Problem 4: Profit Maximization (xx)

A smartphone accessories company manufactures premium cases. Their market analysis shows:

- Demand: Q = 2000 25p (units per month)
- Fixed costs: €15,000 per month
- Variable cost: €20 per case
- a) Write the revenue function R(p) in terms of price.
- b) Write the cost function C(p) in terms of price.
- c) Write the profit function $\Pi(p)$ and identify its form.
- d) Find the profit-maximizing price and quantity.
- e) Calculate the maximum monthly profit.
- f) Determine the break-even prices.

Problem 5: Area Optimization (xxx)

A farmer has 400 meters of fencing to create a rectangular grazing area along a straight river. The side along the river needs no fence.

- a) Let x be the length perpendicular to the river. Express the area A as a function of x.
- b) Find the dimensions that maximize the grazing area.
- c) What is the maximum area?
- d) If the farmer needs at least 8,000 m^2 for the animals, what range of widths x will work?
- e) Due to terrain, the length parallel to the river cannot exceed 150 meters. How does this affect the optimal dimensions?

Problem 6: Projectile Motion Application (xxx)

A company is testing delivery drones that follow parabolic flight paths. One drone's height h (in meters) after t seconds is given by:

$$h(t) = -2t^2 + 16t + 10$$

- a) Find the maximum height reached by the drone.
- b) At what time does it reach maximum height?
- c) When does the drone return to its starting height of 10 meters?
- d) If the drone must maintain a minimum height of 30 meters for safety, during what time interval is it safe?
- e) The drone's horizontal speed is 5 m/s. How far does it travel horizontally while above 30 meters?

Problem 7: Multi-Product Optimization (xxxx)

TechGear sells two related products: wireless earbuds and charging cases. Market research reveals:

Earbuds:

- Demand: $Q_e = 1000 5p_e$ when sold alone
- Production cost: €30 per unit
- Can be sold with or without case

Charging Cases:

- Only bought by earbud customers
- 60% of earbud buyers will buy a case if priced at €20
- For each €5 increase in case price, 10% fewer earbud buyers purchase a case
- Production cost: €8 per case

Bundle Option:

- The company is considering bundling both products
- Bundle demand: $Q_b = 800 4p_b$ where p_b is bundle price
- Same production costs apply
- a) Write the function for case demand Q_c as a percentage of earbud sales, depending on case price p_c .
- b) If earbuds are priced at €80 and cases at €25, calculate:
 - Number of earbuds sold
 - Number of cases sold
 - · Total profit from this pricing strategy
- c) Find the optimal bundle price and calculate the profit from bundling.
- d) The company can only produce 500 units total (earbuds + cases) per month. Which strategy should they pursue:
 - Separate pricing at €80 for earbuds and €25 for cases
 - Bundling at the optimal bundle price
 - Another pricing strategy you determine
 - Justify your answer with calculations.