

Session 06-03 - Area Problems & Basic Applications

Section 06: Integral Calculus

Dr. Nikolai Heinrichs & Dr. Tobias Vlček

Entry Quiz - 10 Minutes

Quick Review from Session 06-02

Test your understanding of Definite Integrals

1. Evaluate $\int_1^4 (3x^2 - 2x) dx$
2. If $\int_0^5 f(x) dx = 18$ and $\int_3^5 f(x) dx = 7$, find $\int_0^3 f(x) dx$
3. What does $\int_a^b f'(x) dx$ represent geometrically and algebraically?
4. For $f(x) = x - 2$ on $[0, 4]$, is the signed area positive, negative, or zero?

Homework Discussion - 15 Minutes

Your questions from Session 06-02

Focus on FTC and definite integrals

- Evaluating definite integrals with bounds
- Signed area vs. total area distinction
- Properties of definite integrals
- Net change applications

...

Note

Today we focus on area calculations and introduce exponential and logarithmic integrals!

Learning Objectives

What You'll Master Today

- Calculate area under a curve above the x-axis
- Handle regions where the function is below the x-axis
- Find total area by splitting at zeros
- Integrate exponential functions $\int e^{ax} dx$

- Integrate $\frac{1}{x}$ to get natural logarithm
- Apply area concepts to business problems
- Interpret accumulated quantities from rate functions

...

i Note

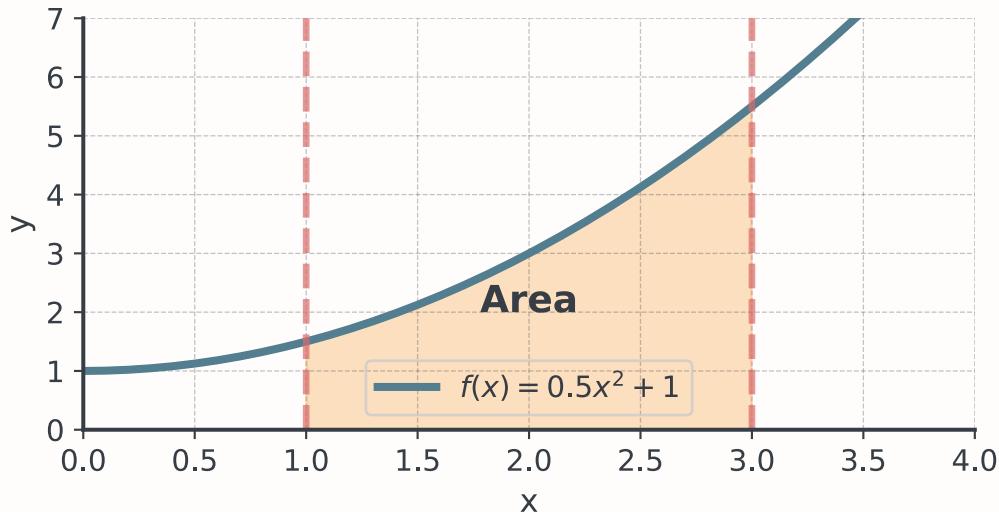
Area calculations are one of the most common applications of integration!

Part A: Area Under a Curve

When $f(x) \geq 0$

Simple case: When $f(x) \geq 0$ on $[a, b]$, the definite integral gives the area directly.

$$\text{Area} = \int_a^b f(x) dx$$



Example: Area Under a Parabola I

Find the area under $f(x) = x^2$ from $x = 0$ to $x = 3$.

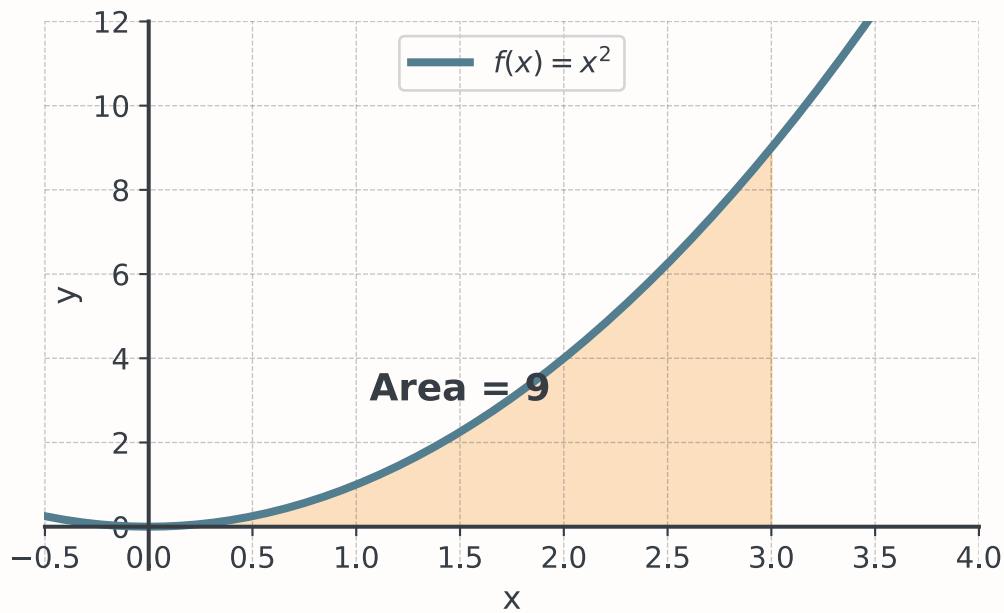
...

Solution:

$$\text{Area} = \int_0^3 x^2 dx = \frac{x^3}{3} \Big|_0^3 = \frac{27}{3} - 0 = 9$$

Example: Area Under a Parabola II

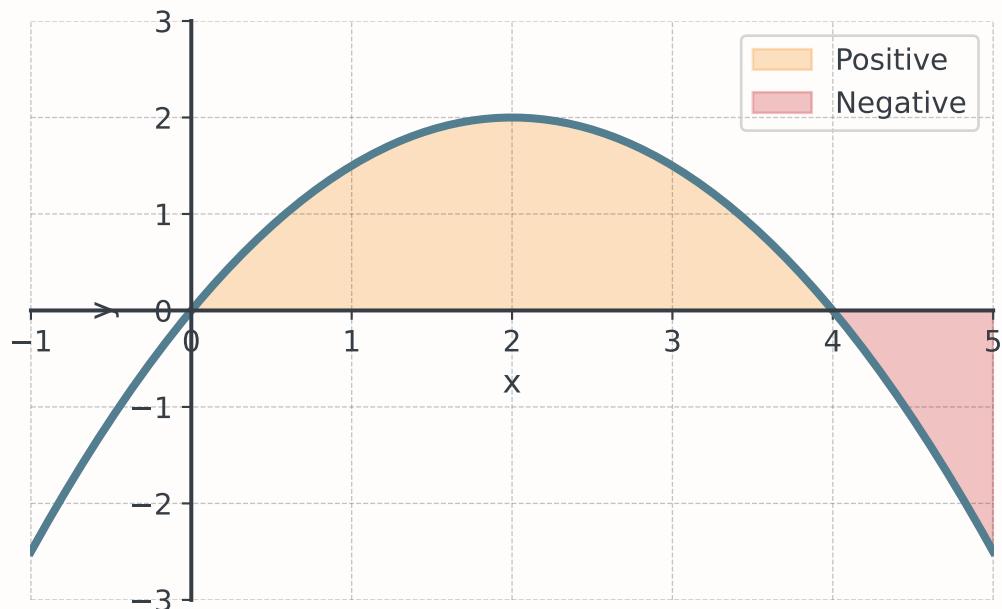
Find the area under $f(x) = x^2$ from $x = 0$ to $x = 3$.



Part B: Area When $f(x) < 0$

The Sign Problem

When $f(x) < 0$: The definite integral gives a negative value!



...

Warning

Definite integral \neq Total area when function crosses the x-axis!

Total Area Strategy

To find total (unsigned) area:

1. Find where $f(x) = 0$ (zeros/roots)
2. Split the integral at each zero
3. Take absolute value of each piece
4. Add all the positive values

...

$$\text{Total Area} = \sum |\text{each region}|$$

Example: Finding Total Area

Total area between $f(x) = x^2 - 4$ and x-axis from $x = 0$ to $x = 3$?

...

Step 1: Find zeros: $x^2 - 4 = 0 \implies x = \pm 2$

- Only $x = 2$ is in $[0, 3]$.

...

Step 2: Determine signs:

- $f(1) = -3 < 0$ (below x-axis on $[0, 2]$)
- $f(3) = 5 > 0$ (above x-axis on $[2, 3]$)

Completing the Calculation

Step 3: Calculate each piece:

$$\int_0^2 (x^2 - 4) dx = \left[\frac{x^3}{3} - 4x \right]_0^2 = \frac{8}{3} - 8 = -\frac{16}{3}$$

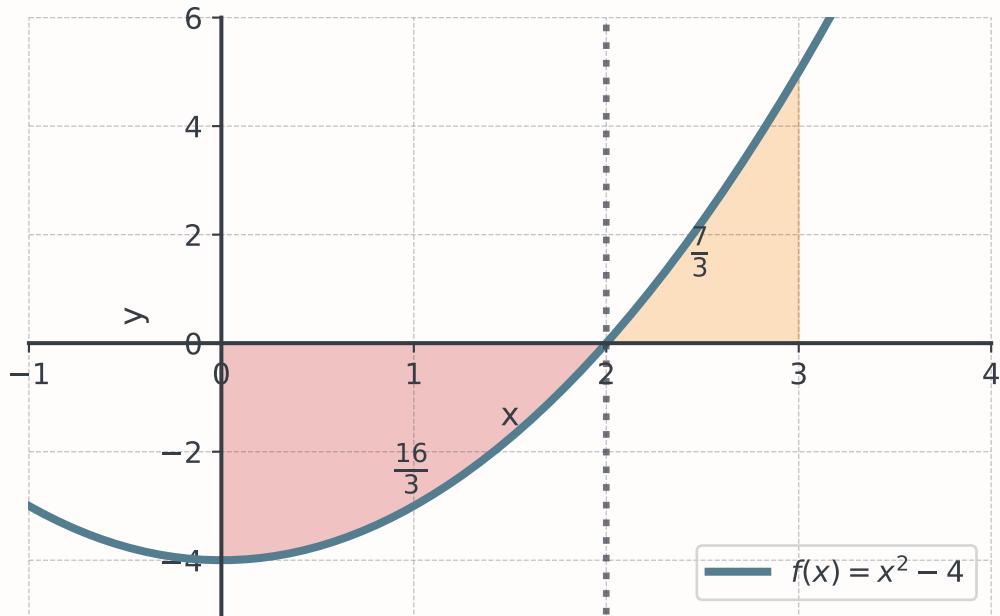
$$\int_2^3 (x^2 - 4) dx = \left[\frac{x^3}{3} - 4x \right]_2^3 = (9 - 12) - \left(\frac{8}{3} - 8 \right) = -3 + \frac{16}{3} = \frac{7}{3}$$

...

Step 4: Total area:

$$\text{Total Area} = \left| -\frac{16}{3} \right| + \frac{7}{3} = \frac{16}{3} + \frac{7}{3} = \frac{23}{3}$$

Visualization



...

$$\text{Total Area} = \frac{16}{3} + \frac{7}{3} = \frac{23}{3} \approx 7.67$$

Break - 10 Minutes

Part C: Exponential Integrals

Integrating e^x

$$\text{Recall: } \frac{d}{dx}[e^x] = e^x$$

...

Therefore:

$$\int e^x \, dx = e^x + C$$

...

Tip

The exponential function is its own antiderivative!

Integrating e^{ax}

For e^{ax} where a is a constant:

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$$

...

Verification: $\frac{d}{dx} \left[\frac{1}{a} e^{ax} \right] = \frac{1}{a} \cdot a \cdot e^{ax} = e^{ax} \checkmark$

...

i Note

Trick: Divide by the coefficient of x in the exponent.

Examples: Exponential Integrals

Example 1: $\int e^{3x} dx$

...

- $\frac{1}{3} e^{3x} + C$

...

Example 2: $\int e^{-2x} dx$

...

- $-\frac{1}{2} e^{-2x} + C = -\frac{1}{2} e^{-2x} + C$

...

Example 3: $\int 4e^{5x} dx$

...

- $4 \cdot \frac{1}{5} e^{5x} + C = \frac{4}{5} e^{5x} + C$

Part D: Logarithmic Integral

The Missing Case: $n = -1$

Recall the power rule:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1$$

...

Why not $n = -1$? Division by zero!

$$\int x^{-1} dx = \int \frac{1}{x} dx = ???$$

...

$$\int \frac{1}{x} dx = \ln|x| + C$$

Why the Absolute Value?

- Recall: $\frac{d}{dx}[\ln x] = \frac{1}{x}$ (for $x > 0$)
- But what about $x < 0$?
- For $x < 0$: $\frac{d}{dx}[\ln(-x)] = \frac{1}{-x} \cdot (-1) = \frac{1}{x}$
- ...

! Important

$$\int \frac{1}{x} dx = \ln|x| + C$$

The absolute value handles both positive and negative x .

Examples: Logarithmic Integrals

Example 1: $\int_1^e \frac{1}{x} dx$

...

- $\ln e - \ln 1 = 1 - 0 = 1$
- ...

Example 2: $\int_1^4 \frac{3}{x} dx$

...

- $3(\ln 4 - \ln 1) = 3 \ln 4$
- ...

Example 3: $\int_{-3}^{-1} \frac{2}{x} dx$

...

- $2(\ln 1 - \ln 3) = -2 \ln 3$

Summary: Special Integrals

Function	Antiderivative
e^x	$e^x + C$
e^{ax}	$\frac{1}{a}e^{ax} + C$
$\frac{1}{x}$	$\ln x + C$
$\frac{1}{ax+b}$	$\frac{1}{a} \ln ax+b + C$
...	

💡 Tip

These formulas will appear frequently in business applications!

Guided Practice - 20 Minutes

Set A: Area Calculations

Work individually for 8 minutes

1. Find the area under $f(x) = 3x^2$ from $x = 1$ to $x = 4$.
2. Find the total area between $f(x) = x - 3$ and the x-axis from $x = 0$ to $x = 5$.
3. Find the total area between $f(x) = x^2 - 1$ and the x-axis from $x = 0$ to $x = 2$.

Set B: Exponential & Logarithmic

Work individually for 6 minutes

1. $\int e^{4x} dx$
2. $\int 5e^{-x} dx$
3. $\int_0^2 e^{3x} dx$
4. $\int_1^5 \frac{2}{x} dx$
5. $\int (e^x + \frac{1}{x}) dx$

Practice Set C: Mixed Problems

Work in pairs for 6 minutes

1. Find the area enclosed between $f(x) = e^x$ and the x-axis from $x = 0$ to $x = 2$.
2. A population decays according to $P(t) = 1000e^{-0.1t}$. Find the average population from $t = 0$ to $t = 10$. (Hint: Average = $\frac{1}{b-a} \int_a^b f(x) dx$)

Coffee Break - 15 Minutes

Part E: Business Applications

Total Profit Over Time

Scenario: A company's profit rate (profit per month) is:

$$P'(t) = 50 - 2t \text{ thousand euros per month}$$

where t is months since launch.

...

Questions:

1. What is the total profit during the first year ($t = 0$ to $t = 12$)?
2. At what month does profit rate become negative?

Solution: Profit Analysis

Part 1: Total profit

$$\int_0^{12} (50 - 2t) dt = [50t - t^2]_0^{12} = 600 - 144 = 456$$

Total profit = €456,000

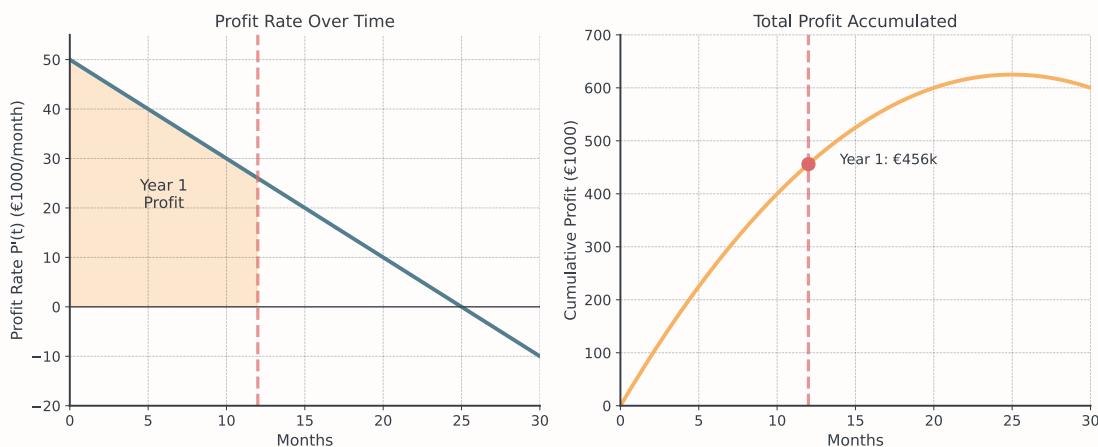
...

Part 2: When profit rate becomes zero

$$50 - 2t = 0 \implies t = 25 \text{ months}$$

The profit rate stays positive for the first 25 months.

Visualizing Profit Accumulation



Exponential Decay in Business

Scenario: Sales of a product decline exponentially after its peak:

$$S(t) = 10000 \cdot e^{-0.2t} \text{ units per month}$$

...

Question: What are the total sales from $t = 0$ to $t = 6$ months?

...

Solution:

$$\begin{aligned} \int_0^6 10000e^{-0.2t} dt &= 10000 \cdot \frac{1}{-0.2} e^{-0.2t} \Big|_0^6 \\ &= -50000(e^{-1.2} - e^0) = -50000(0.301 - 1) = 34,950 \text{ units} \end{aligned}$$

Collaborative Problem-Solving - 30 Minutes

Group Challenge: Market Analysis

Scenario: An e-commerce company tracks its daily revenue rate:

$$R'(t) = 5000 + 200t - 5t^2 \text{ euros per day}$$

where t is days since a marketing campaign started.

The campaign runs for 30 days.

Group Tasks

Work in groups of 3-4

1. Graph $R'(t)$ for the 30-day period. When is the revenue rate highest?
2. Calculate the total revenue for the first 10 days.
3. Calculate the total revenue for the entire 30-day campaign.
4. On which day does the revenue rate first drop below €4,000/day?
5. Find the average daily revenue rate over the 30-day campaign.
6. If the campaign costs €80,000, what is the net profit?

Wrap-Up & Key Takeaways

Today's Essential Concepts

- Area under curve when $f(x) \geq 0$: Use $\int_a^b f(x) dx$ directly
- Total area: Split at zeros and sum absolute values
- Exponential integrals: $\int e^{ax} dx = \frac{1}{a} e^{ax} + C$
- Logarithmic integral: $\int \frac{1}{x} dx = \ln|x| + C$
- Business applications: Total quantities from rate functions
- Average value: $\frac{1}{b-a} \int_a^b f(x) dx$

...

! Important

Next session: Area between TWO curves and economic surplus!

Final Assessment - 5 Minutes

Quick Check

Work individually, then compare

1. Find the total area between $f(x) = x - 2$ and the x-axis from $x = 0$ to $x = 4$.

2. Evaluate $\int_0^3 2e^{-x} dx$.
3. A company's revenue rate is $R'(t) = 100 + 20t$ thousand euros per month. Find total revenue for months 1-5.

Next Session Preview

Coming Up: Area Between Curves

- Finding intersection points of two functions
- Determining which function is “on top”
- Setting up $\int_a^b [f(x) - g(x)] dx$
- Handling multiple regions
- Consumer and producer surplus introduction

...

Tip

Complete Tasks 06-03

- Practice area calculations with sign changes
- Work with exponential and logarithmic integrals
- Focus on business rate-to-total problems