Session 03-05 - Composition, Inverses & Advanced Graphing

Section 03: Functions as Business Models

Dr. Nikolai Heinrichs & Dr. Tobias Vlćek

Entry Quiz - 10 Minutes

Review from Session 03-04

Work individually, then exchange with your neighbor for peer review

- 1. Given $f(x) = 2x^2 8x + 6$:
 - a) Write the function shifted left 3 units
 - b) Write the function stretched vertically by factor 1.5
- 2. A cost function C(x) = 100 + 5x increases fixed costs by ≤ 50 and variable costs by 20%. Write the new function.
- 3. Identify the transformations needed to go from $f(x) = x^2$ to $g(x) = -2(x+1)^2 + 4$
- 4. If a profit function's graph shifts right by 10 units, what does this mean for the business?

Homework Discussion - 20 Minutes

Your questions from Tasks 03-04

Focus on transformation interpretations

- Problem 4: Seasonal business model
 - How did season reversal affect profits?
- Problem 5: Graph interpretation
 - Identifying cost-effective production ranges
- Problem 7: Multi-location analysis
 - Which transformations most impacted profitability?

. . .

i Note

Composition and inverses will help us model even more complex business relationships!

Function Composition

Understanding Composition

Composition models sequential processes

Definition: $(f \circ g)(x) = f(g(x))$

- Read as "f composed with g"
- Apply g first, then f
- Output of g becomes input of f
- Order matters! $(f \circ g) \neq (g \circ f)$ usually
- Business meaning: Multi-step processes

Composition Example: Supply Chain

Imagine a company manufacturing products from raw materials.

- 1. Raw materials to components: g(x) = 2x + 10 (cost in \in)
- 2. Components to products: f(y) = 3y + 50 (cost in \in)
- $(f \circ g)(x) = f(g(x)) = f(2x + 10)$
- $\bullet = 3(2x+10)+50$
- $\bullet = 6x + 30 + 50$
- = 6x + 80
- For 10 units raw material: Cost = €140

Supply Chain Visualization

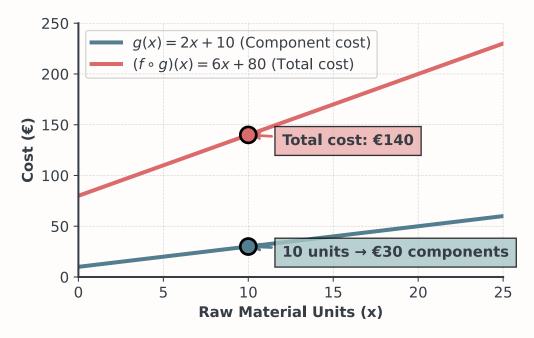


Figure 1: Function Composition: Supply Chain Cost Analysis

Domain Considerations

Domain of composition can be restricted

For $(f \circ g)(x)$:

- 1. Start with domain of g
- 2. Find range of g
- 3. Intersect with domain of f
- 4. Track back to valid x values

. . .

This is not too complicated, right? Here we just need to be careful.

Example: Weight-Based Dosage and Safe Maximum

Calculate dosage based on body weight, then check safety limit

- Dosage from weight: g(x) = 5x mg (5mg per kg body weight)
- Safe processing: $f(x) = \sqrt{500 x}$ (requires total dose ≤ 500 mg)
- Composition requires: $5x \le 500$, so $x \le 100$ kg body weight

. . .

Warning

Therefore, we cannot process a patient weighing more than 100kg, as this would be unsafe!

Quick Practice - 10 Minutes

Work individually, then we discuss

A food delivery service has the following cost structure:

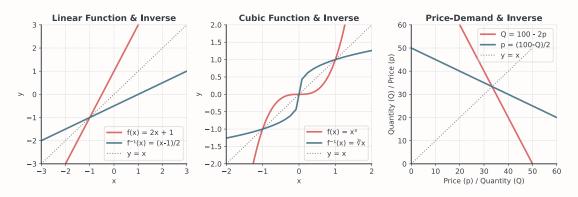
- Restaurant to warehouse: g(x) = 1.5x + 5 (\in per order, where x is number of orders)
- Warehouse to customer: f(y) = 2y + 8 (\in delivery cost)
- 1. Find the composition $(f \circ g)(x)$ representing total delivery cost.
- 2. Calculate the total cost for 20 orders.
- 3. If the domain of g is [0, 100] orders, what is the range of g?

Break - 10 Minutes

Inverse Functions

What is an Inverse Function?

An inverse function reverses the original function



. . .

Ţip

If f(a) = b, then $f^{-1}(b) = a$. The inverse "undoes" what the original function does.

Testing for Invertibility

A function has an inverse if it's one-to-one

- · Each output comes from exactly one input
- Horizontal line test: Each horizontal line hits graph at most once
- For continuous functions: Always increasing or always decreasing

. . .

Question: Which of the following two fulfill the one-to-one condition?

- f(x) = 2x + 5
- $g(x) = x^2$

. . .

Ţip

Just make sure, you don't use the vertical line test here!

Finding Inverse Functions

Step-by-step process

1. Replace f(x) with y

- 2. Swap x and y
- 3. Solve for y
- 4. Replace y with $f^{-1}(x)$
- 5. Verify domain and range

. . .

Looks complicated? It is actually rather easy!

Example: Simple Linear Function

Find the inverse of f(x) = 3x + 6

- 1. y = 3x + 6
- 2. x = 3y + 6 (swap x and y)
- 3. 3y = x 6 (solve for y)
- **4.** $y = \frac{x-6}{3}$
- 5. Inverse: $f^{-1}(x) = \frac{x-6}{3}$

. . .

Ţip

Verify:
$$f\big(f^{-1}(x)\big)=f\big(\frac{x-6}{3}\big)=3\cdot\frac{x-6}{3}+6=x-6+6=x$$
 \checkmark

Visualizing the Inverse

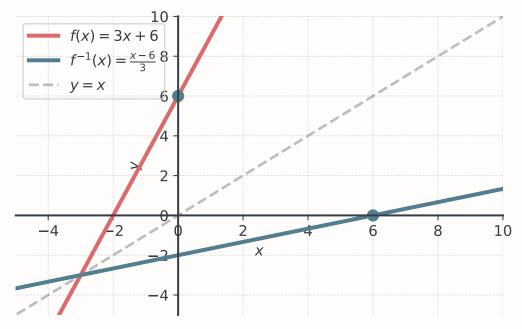


Figure 2: Function f(x)=3x+6 and its inverse $f^{-1}(x)=\frac{x-6}{3}$ reflected over y=x

Example: Price-Demand Inverse

Demand function: Q = 1000 - 20p

1.
$$y = 1000 - 20p$$

2.
$$x = 1000 - 20p$$
 (swap)

3.
$$x - 1000 = -20p$$

4.
$$p = 50 - 0.05x$$

5. Inverse:
$$p(Q) = 50 - 0.05Q$$

. . .

What does this mean? It gives the price needed for specific quantity!

Visualizing Price-Demand Relationship

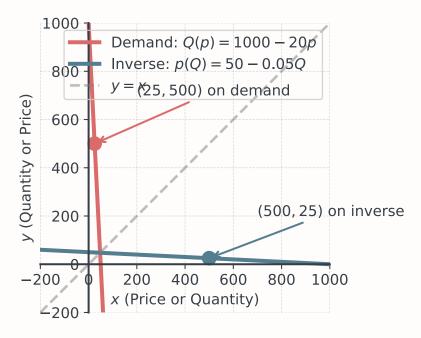


Figure 3: Demand function and its inverse reflected over the line y=x.

Advanced Graphing Techniques

Graphing Composed Functions

Build graphs step by step

. . .

Strategy for graphing $(f \circ g)(x)$:

- 1. Graph g(x) first
- 2. For key points, find g(x) values

- 3. Apply f to those values
- 4. Plot resulting points
- 5. Consider domain restrictions

Graphing Inverse Functions

Use reflection property

. . .

To graph $f^{-1}(x)$ from f(x):

- 1. Plot original function f(x)
- 2. Draw line y = x
- 3. Reflect f(x) over this line
- 4. Key points: (a, b) on $f \rightarrow (b, a)$ on f^{-1}
- 5. Domain of $f = \text{Range of } f^{-1}$
- 6. Range of $f = Domain of f^{-1}$

Guided Practice - 25 Minutes

Individual Exercise Block

Work alone for 15 minutes, then discuss for 10 minutes

- 1. Given f(x) = 2x + 3 and $g(x) = x^2 1$:
 - a) Find $(f \circ g)(x)$ and evaluate $(f \circ g)(2)$
 - b) Find $(g \circ f)(x)$ and evaluate $(g \circ f)(2)$
- 2. A company converts raw materials through two stages:
 - Stage 1: $C_1(x) = 50x + 200$ (process cost in €)
 - Stage 2: $C_2(y) = 2y + 500$ (assembly cost in \in)
 - Find the total cost function and cost of 100 units of material.
- 3. Find the inverse of $f(x) = \frac{2x+3}{5}$ and verify your answer.

Coffee Break - 15 Minutes

Business Process Modeling

Multi-Step Processes

Complex business operations as function chains

. . .

Question: Does you have any example that involves multiple stages?

. . .

Examples of composition in business:

Manufacturing: Raw materials → Components → Products

- Finance: Local currency → Foreign currency → Investment
- Retail: Wholesale price → Retail price → After-tax price
- Marketing: Leads → Conversions → Revenue

Supply Chain Example

Three-Stage Production from Cost to Price

- 1. Supplier: Raw materials at $p_r = 10 + 0.5x$ (\in per kg)
- 2. Processor: Converts at 80% efficiency, adds €20/kg
- 3. Retailer: Marks up 50%, adds €15 flat fee

. . .

Let's build the final price function together:

- After supplier: Cost = $x(10 + 0.5x) = 10x + 0.5x^2$
- After processor: Cost = $0.8(10x + 0.5x^2) + 20x$
- After retailer: Price = $1.5[(10x + 0.5x^2) + 20x] + 15$

Inverse Functions in Business

Common business inverses

- Demand ↔ Price: Know one, find the other
- Profit ↔ Sales: Find required sales for target profit
- Break-even analysis: Reverse engineer requirements

. . .

♀ Tip

Also, it could just be a task you are given.

Problem-Solving - 30 Minutes

International Business Model I

The Scenario: Global E-Commerce Platform

An e-commerce company operates internationally with these functions:

Pricing Model:

- Base price in USD: P(x) = 50 + 0.8x where x is quantity
- EUR conversion: E(p) = 0.85p
- UK markup: U(p) = 1.2p + 10

International Business Model II

The Scenario: Global E-Commerce Platform

Shipping Costs:

- Weight calculation: W(x) = 0.5x + 2 (kg)
- Shipping cost: S(w) = 15w + 25 (\in)

Customer Demand:

• At total price T: D(T) = 5000 - 20T units per month

Your Tasks

If you like, you can work in groups

- 1. Find the total price function for EU customers (product + shipping) as a function of quantity x.
- 2. Find the inverse of the demand function. What does it represent?
- 3. Create a composite function that gives monthly demand based on quantity ordered.
- 4. If the company wants exactly 2000 units demanded per month, what should the quantity per order be?
- 5. The company can only process orders where total price leads to positive demand. Find the maximum viable order quantity.

Section 03 Synthesis

Your Function Toolkit

Complete arsenal for business modeling

- Function basics: Notation, domain, range
- Linear functions: Constant rates, equilibrium
- Quadratic functions: Optimization, vertex
- Transformations: Adapting to change
- Composition: Multi-step processes
- Inverses: Reversing calculations

Key Business Applications

From this section, you can now:

- Model costs, revenue, and profit
- Find market equilibrium
- · Optimize prices and quantities
- Adapt models for new conditions
- Chain processes together
- Reverse-engineer requirements

Wrap-Up

Key Takeaways

- Composition models sequential processes
- Order matters: $(f \circ g) \neq (g \circ f)$
- Inverses reverse calculations
- One-to-one functions are invertible
- Graphical tools reveal function relationships
- Business processes often involve multiple functions

Final Assessment

5 minutes - Individual work

A retailer has:

- Cost function: C(x) = 20x + 500
- Price function: P(x) = 50 0.5x
- Revenue: $R(x) = x \cdot P(x)$
- 1. Express revenue as a function of x explicitly
- 2. Find the inverse of the cost function
- 3. If the retailer has a budget of €2,500, how many units can they stock?

Next Session Preview

Session 03-06: Mock Exam 02 Key concepts you should master

- Function fundamentals: Domain, range, notation
- Linear functions: Supply/demand, equilibrium, CVP analysis
- Quadratic functions: Vertex, optimization, profit maximization
- Transformations: Shifts, stretches, business interpretations
- Composition & Inverses: Multi-step processes, reversing calculations
- Graphical analysis: Reading and interpreting business graphs

Exam Preparation Tips

Function Problem Strategies

Systematic approaches for success

- · Start with domain: Always check restrictions first
- Identify function type: Linear, quadratic, or composed?
- Business context: What does each variable represent?
- Optimization: Remember vertex formula $x=-\frac{b}{2a}$
- Verify results: Do answers make business sense?

Common Pitfalls to Avoid

Learn from typical mistakes

- Not follwing the instructions: Read the tasks carefully!
- Composition order: Remember $(f \circ g) \neq (g \circ f)$
- Units confusion: Track currency vs. quantity units
- Graph interpretation: Missing key features
- Business meaning: Failing to interpret mathematical results

. . .

Homework Assignment: Complete Tasks 03-05!