Session 03-04 - Transformations & Graphical Analysis

Section 03: Functions as Business Models

Dr. Nikolai Heinrichs & Dr. Tobias Vlćek

Entry Quiz - 10 Minutes

Review from Session 03-03

Work individually, then we compare together

- 1. Find the vertex of $f(x)=-2x^2+12x-10$ and determine if it's a maximum or minimum.
- 2. A company's profit function is $P(x) = -x^2 + 80x 1200$. Find:
 - a) The quantity that maximizes profit
 - b) The maximum profit
- 3. Convert $g(x) = x^2 4x + 7$ to vertex form.
- 4. Revenue is modeled by R(p)=p(600-3p). What price maximizes revenue?

Homework Discussion - 20 Minutes

Sharing Solutions from Tasks 03-03

Focus on optimization strategies

- Problem 3: Theater revenue optimization
 - How did capacity constraints affect your solution?
- Problem 5: Area optimization with fencing
 - ► Impact of the river (no fence needed)?
- Problem 7: Multi-product optimization (if attempted)
 - ► Bundling vs. separate pricing insights?

. .

© Key Insight

Optimization often involves balancing mathematical ideals with practical constraints!

Vertical Transformations

Vertical Shifts

Moving graphs up or down

. . .

Given original function f(x):

- Upward shift: g(x) = f(x) + k (k > 0)
- Downward shift: g(x) = f(x) k (k > 0)
- Graph effect: Entire graph moves vertically
- Business meaning:
 - Fixed cost changes
 - Base price adjustments
 - Overhead modifications

Example: Cost Function Adjustment

Original cost: $C(x) = 5x^2 + 3x + 100$

- Rent increases by €100: $C_{new}(x) = 5x^2 + 3x + 200$
- Government subsidy of €50: $C_{new}(x) = 5x^2 + 3x + 50$

. . .

Question: Any idea how we could graph this?

Vertical Shift Visualization

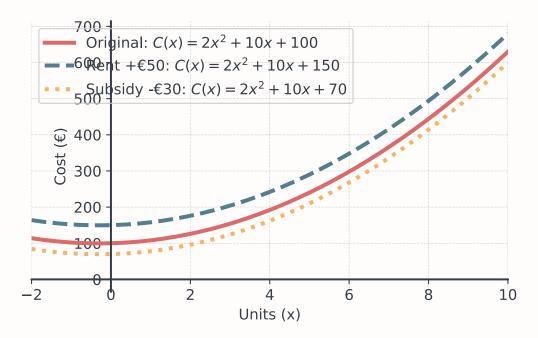


Figure 1: Vertical Shifts in Cost Functions

Same parabola shape, shifted vertically - fixed costs change, but variable cost structure remains the same!

Vertical Stretching and Compression

Changing the vertical scale

. . .

Given original function f(x):

- Vertical stretch: $g(x) = a \cdot f(x)$ where a > 1
- Vertical compression: $g(x) = a \cdot f(x)$ where 0 < a < 1
- Reflection: g(x) = -f(x) (flip over x-axis)
- Business meaning:
 - Percentage markups/discounts
 - Tax multipliers
 - Currency conversions

Example: Revenue Scaling

Original revenue: $R(x) = 50x - 0.5x^2$

- 20% price increase across all products: $R_{new}(x)=1.2(50x-0.5x^2)=60x-0.6x^2$
- 20% price decrease across all products: $R_{new}(x) = 0.8 \left(50x 0.5x^2\right) = 40x 0.4x^2$

. . .

Question: Can anyone describe what happens now?

. . .

Ţip

All three functions have the same optimal quantity (50 units), but revenue scales proportionally with price - stretch up or compress down!

Vertical Stretch and Compression

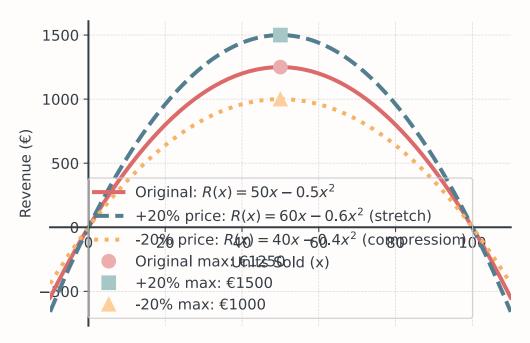


Figure 2: Vertical Stretch & Compression: Price Changes

Reflection Visualization

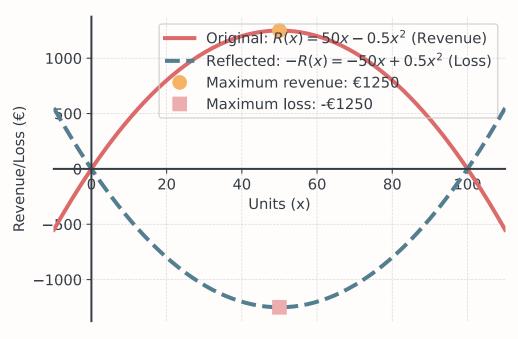


Figure 3: Reflection: Flipping Over x-axis

Quick Practice - 10 Minutes

Work individually, then we discuss

Given the original profit function: $P(x) = -x^2 + 40x - 200$

- 1. Write the new function if fixed costs increase by €100
- 2. Write the new function if a government grant reduces costs by €50
- 3. Write the new function if all revenues increase by 30%
- 4. Write the new function if all revenues decrease by 25%
- 5. What business scenario could -P(x) represent?
- 6. Write the reflected function explicitly

Break - 10 Minutes

Horizontal Transformations

Horizontal Shifts

Moving graphs left or right

Given original function f(x):

- Right shift: g(x) = f(x h) where h > 0
- Left shift: g(x) = f(x+h) where h > 0
- Business meaning:
 - Time delays or advances
 - Market entry timing
 - Seasonal adjustments

Warning

Counterintuitive: Minus shifts right, plus shifts left!

Example: Seasonal Demand Shift

Summer demand peaks in June (month 6): $D(t) = -(t-6)^2 + 100$

- Unusually hot weather shifts peak to May (left shift): $D_{new}(t) = -(t-5)^2 + 100$
- Unusually cold weather shifts peak to July (right shift): $D_{new}(t) = -(t-7)^2 + 100$

Question: Anyone with an idea how to graph this?

. . .

Same shape parabola, shifted horizontally - peak demand moves but pattern stays the same!

Horizontal Shift Visualization

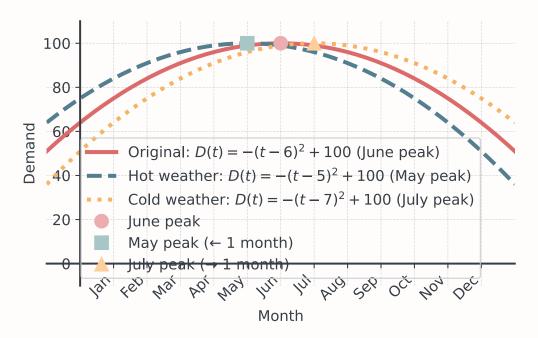


Figure 4: Horizontal Shifts: Seasonal Demand Changes

Warning

Remember: D(t-5) shifts RIGHT to May, D(t-7) shifts RIGHT to July - counterintuitive notation!

Horizontal Stretch and Compression

Changing the horizontal scale

. . .

Given original function f(x):

- Horizontal stretch: g(x) = f(x/b) where b > 1
- Horizontal compression: g(x) = f(bx) where b > 1
- Reflection: g(x) = f(-x) (flip over y-axis)
- Business meaning:
 - Time scaling (quarterly to monthly)
 - Production speed changes
 - Market cycle adjustments

Example: Product Lifecycle

Original lifecycle (monthly): $L(t) = -t^2 + 8t + 1000$

 • Competitor speeds up cycle (2x faster): $L_{fast}(t) = -(2t)^2 + 8(2t) = -4t^2 + 16t + 1000$ • Extended warranty slows cycle (2x slower): $L_{slow}(t) = -(t/2)^2 + 8(t/2) = -0.25t^2 + 4t + 1000$

. . .

Question: What happens to the lifecycle duration?

. . .

Horizontal compression (faster) \rightarrow narrower curve, earlier peak.

Horizontal stretch (slower) → wider curve, later peak!

. . .

Warning

Counterintuitive again: f(2t) compresses (faster), f(t/2) stretches (slower)!

Horizontal Stretch/Compression

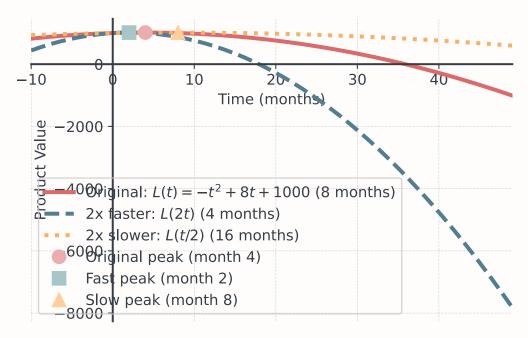


Figure 5: Horizontal Scaling: Product Lifecycle Changes

Combining Transformations

Order of Operations

Apply transformations systematically

. . .

Standard order for $g(x) = a \cdot f(b(x - h)) + k$:

- 1. Horizontal shift by h
- 2. Horizontal stretch/compress by factor b
- 3. Vertical stretch/compress by factor \boldsymbol{a}
- 4. Vertical shift by k

. . .

Let's apply these steps to a function!

Complete Transformation Example

Start with $f(x) = x^2$

Transform to: $g(x) = -2(x-3)^2 + 5$

- Shift right 3 units: $(x-3)^2$
- Stretch vertically by 2: $2(x-3)^2$
- Reflect over x-axis: $-2(x-3)^2$
- Shift up 5 units: $-2(x-3)^2 + 5$

. . .

Question: Who can describe how this might look like?

Original Function

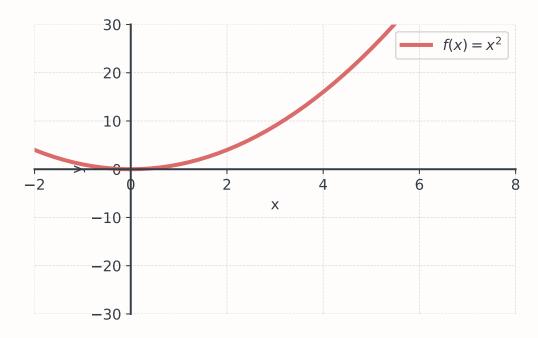


Figure 6: Starting Point: $f(x) = x^2$

Progressive Transformation

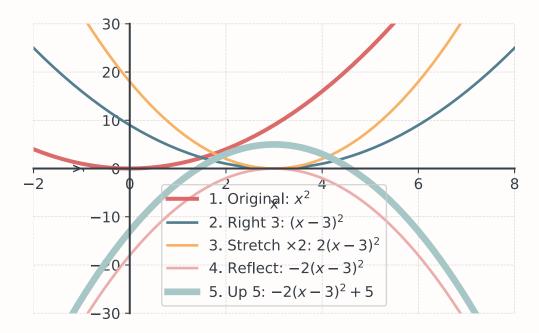


Figure 7: All Transformation Steps

Business Scenario: Market Expansion

Original profit in Germany: $P(x) = -x^2 + 40x - 180$

. . .

Research estimates expansion to France with adjustments:

- 20% higher costs: Multiply by 0.8
- Fixed cost increase of €200: Subtract 200
- 3-month delay: Replace x with (x-3)
- $P_{France}(x) = 0.8[-(x-3)^2 + 40(x-3) 180] 200$

. . .

Question: Should the company expand to France?

Market Expansion Visualization

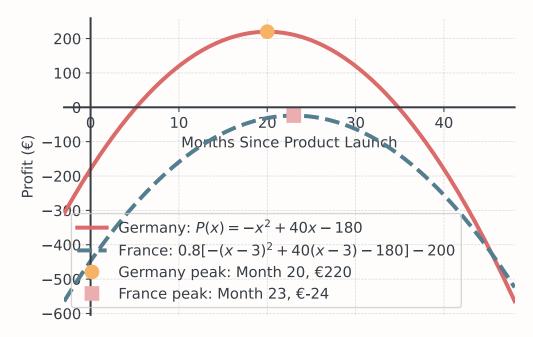


Figure 8: Germany vs France: Profit Comparison

Guided Practice

Individual Exercise Block I

Work alone for 10 minutes, then we discuss the solutions

- 1. Given $f(x) = x^2 4x + 3$, write the equation for:
 - a) f(x) shifted up 5 units
 - b) f(x) shifted left 2 units
 - c) f(x) reflected over the x-axis
- 2. A cost function is $C(x) = 0.5x^2 + 20x + 500$. Due to inflation:
 - All costs increase by 10%
 - An additional fixed cost of €100 is added
 - Write new cost function and find cost for producing 50 units.

Individual Exercise Block II

Work alone for 5 minutes, then we discuss the solutions

- 1. The demand for ice cream follows $D(t) = -2(t-7)^2 + 200$ where t is the month.
 - a) In which month is demand highest?
 - b) If climate change shifts the peak 1 month earlier and increases maximum demand by 15%, write the new function.

Coffee Break - 15 Minutes

Reading Economic Graphs

Extracting Information from Graphs

Graphs tell business stories

Key features to identify:

- Intercepts: Starting values, break-even points
- Slope/Rate of change: Marginal values, trends
- Maximum/Minimum: Optimal points, extremes
- Intersections: Equilibrium, equal values
- Shape: Linear, quadratic, exponential growth patterns
- Domain/Range: Feasible regions, constraints

Graph Analysis Example

Scenario: A graph shows two curves:

- Cost function: Starts at (0, 1000), curves upward
- Revenue function: Starts at origin, curves then flattens
- They intersect at x = 50 and x = 200

. . .

Business insights:

- Fixed costs: €1,000 (y-intercept of cost)
- Break-even points: 50 and 200 units
- Profitable region: Between 50 and 200 units
- Optimal production: Where vertical distance is maximum

Visualizing the Business Story

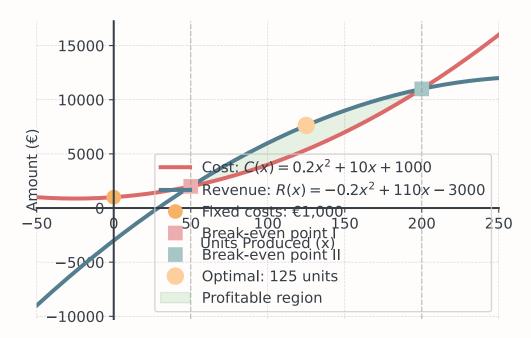


Figure 9: Cost vs Revenue: Finding the Profitable Zone

Comparative Graph Analysis

Comparing multiple scenarios visually

. . .

When comparing functions:

- Parallel lines: Same variable costs, different fixed costs
- Different slopes: Different efficiency levels
- Intersection points: Crossover quantities
- Vertical distances: Profit or loss amounts

Collaborative Problem-Solving

Franchise Expansion Analysis

The Scenario: Coffee Chain Expansion

A successful coffee shop has this profit model for their original location:

$$P(x) = -0.1x^2 + 50x - 4000$$

where x is the number of customers per day.

Understanding the function:

- The $-0.1x^2$ term represents diminishing returns (congestion, slower service)
- The 50x term represents revenue per customer
- The -4000 represents daily fixed costs

Now, they want to open franchises in different markets!

. . .

- Revenue changes affect the 50x coefficient
- ullet Fixed cost changes affect the -4000 constant
- Efficiency changes affect the $-0.1x^2$ coefficient (less negative = more efficient)
- Vertical scaling multiplies the entire function

The Different Markets

A: Tourist Area

- Revenue: 30% higher prices \rightarrow multiply 50x by 1.3
- Fixed costs: Increase by \leq 1,000 \rightarrow change -4000 to -5000
- Efficiency: Same as original

Task: Apply these transformations to get $P_A(x)$

B: Business District

- Revenue: Same per customer (50x unchanged)
- Efficiency: Better workflow reduces congestion \rightarrow multiply $-0.1x^2$ by 0.8 (less negative)
- Fixed costs: Increase by $\leq 2,000 \rightarrow$ change -4000 to -6000

Task: Apply these transformations to get $P_B(x)$

C: University Campus

- Revenue: 40% lower prices \rightarrow multiply 50x by 0.6
- Fixed costs: Decrease by €500 → change -4000 to -3500
- Efficiency: Same as original

Task: Apply these transformations to get $P_C(x)$

Your Tasks

Work in groups of 3-4 students

- 1. Write the transformed profit function for each location
- 2. Find the optimal number of customers for each location
- 3. Calculate the maximum daily profit for each location
- 4. Which location should be prioritized for expansion and why?
- 5. If the company can afford total fixed costs of €15,000 per day across all locations (including original), which combination of locations should they operate?

Wrap-Up

Key Takeaways

- · Vertical shifts represent fixed changes
- Horizontal shifts represent timing changes
- Stretches and compressions show scaling effects
- Multiple transformations model complex scenarios
- Graphs reveal optimization opportunities
- Business decisions require comprehensive analysis

Final Assessment

5 minutes - Individual work

A retailer's monthly profit is modeled by $P(x) = -2x^2 + 100x - 800$ where x is the number of items sold in hundreds.

Due to economic changes:

- A competitor enters, reducing maximum profit by 25%
- Break-even point shifts from 10 to 15 items (hundreds)
- 1. What transformation represents the competitor's impact?
- 2. What transformation represents the break-even shift?
- 3. Sketch how the graph would change.

Next Session Preview

Session 03-05: Composition, Inverses & Advanced Graphing

- Function composition for multi-step processes
- Finding inverse functions
- When are functions invertible?
- Advanced graphing techniques
- Complex business process modeling

. . .

Ţip

Homework Assignment: Complete Tasks 03-04!

Appendix

Comparing All Locations

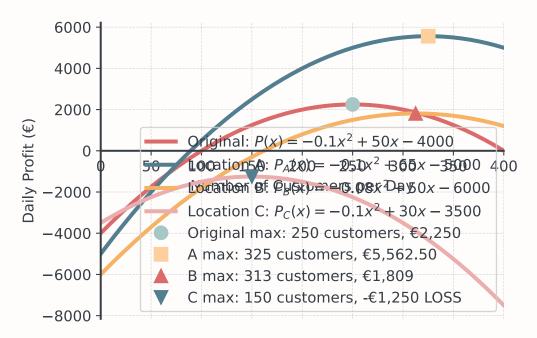


Figure 10: Franchise Profit Comparison: All Four Locations

Location A is the clear winner! Location C never breaks even - avoid it despite lower fixed costs!