Session 03-03 - Quadratic Functions & Basic Optimization

Section 03: Functions as Business Models

Dr. Nikolai Heinrichs & Dr. Tobias Vlćek

Entry Quiz - 10 Minutes

Review from Session 03-02

Work individually, then we discuss together as group

- 1. Find the market equilibrium for:
 - Demand: $Q_d = 200 2p$
 - Supply: $Q_s = 50 + 3p$
- 2. Write the equation of a line passing through points (2, 8) and (5, 20).
- 3. For the cost function C(x) = 500 + 12x and revenue R(x) = 25x, find the profit when x = 100.

Homework Review - 20 Minutes

Discussing Tasks 03-02

Let's discuss the most difficult tasks from last lecture

- Problem 5: Market competition analysis
 - ► How did you determine the break-even data usage?
- Problem 6: Production planning with constraints
 - Challenges with multiple constraints?
- Problem 7: Dynamic pricing (if attempted)
 - What price seemed optimal in your testing?

. . .

i Note

Today we'll learn the exact method to find that optimal price!

Introduction to Quadratic Functions

From Linear to Quadratic

Quadratic functions model accelerating change

. . .

Linear vs. Quadratic:

- Linear: $f(x) = mx + b \rightarrow \text{Constant rate of change}$
- Quadratic: $f(x) = ax^2 + bx + c \rightarrow$ Changing rate of change
- Graph shape: Quadratic → Parabola (U-shaped or ∩-shaped)
- Business meaning:
 - ▶ Linear → Fixed relationships
 - ► Quadratic → Optimization opportunities!

Standard Form

The foundation: $f(x) = ax^2 + bx + c$

Key components:

- · a: Direction and width
 - a > 0: Opens upward (has minimum)
 - a < 0: Opens downward (has maximum)
 - |a| larger \rightarrow Narrower parabola
- b: Affects position of vertex
- c: y-intercept (value when x = 0)

Example: Profit Function

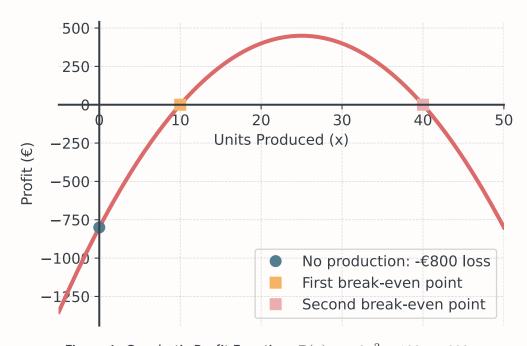


Figure 1: Quadratic Profit Function: $P(x) = -2x^2 + 100x - 800$

Quick Practice - 10 Minutes

Work individually, then we discuss

- Determine: Does it open upward (U) or downward (n)?
- Determine: Does it have a maximum or minimum?
- Determine: What is the y-intercept?
- a) $R(x) = -3x^2 + 120x 500$
- b) $C(x) = 2x^2 + 40x + 1000$
- c) $P(x) = -x^2 + 50x 300$

Challenge: For c. find the break-even points.

Break - 10 Minutes

Finding the Vertex

The Vertex Formula

The key: x = -b/2a

For $f(x) = ax^2 + bx + c$:

- Vertex x-coordinate: $x_v = -\frac{b}{2a}$
- Vertex y-coordinate: $f(x_v) = f(-\frac{b}{2a})$
- Vertex represents:
 - Maximum if a < 0 (parabola opens down)
 - Minimum if a > 0 (parabola opens up)
- \bullet Axis of symmetry: Vertical line $\boldsymbol{x} = \boldsymbol{x}_v$

Vertex Example: Revenue Optimization

A company's revenue depends on price:

$$R(p) = -50p^2 + 2000p$$

- Find optimal price: $p_v=-\frac{2000}{2(-50)}=-\frac{2000}{-100}=20$ euros
- Maximum revenue: R(20) = 20000 euros
- Interpretation: Charging €20 maximizes revenue at €20,000

. . .

Ţip

The axis of symmetry divides the parabola into mirror images. Points equidistant from it have equal revenue!

Visualization

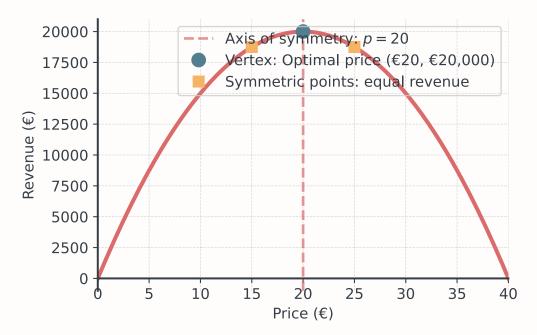


Figure 2: $R(p) = -50p^2 + 2000p$ with Vertex and Axis of Symmetry

Vertex Form

Alternative representation: $f(x) = a(x - h)^2 + k$

- Vertex: (h, k) directly visible!
- Direction: *a* (same as standard form)
- Advantage: Vertex immediately apparent
- Transformation from vertex:
 - ▶ Horizontal shift by h
 - Vertical shift by k
- Example: $f(x) = 2(x-3)^2 + 5 \rightarrow \text{Vertex at } (3,5), \text{ minimum}$
- Example: $g(x) = -(x+4)^2 + 10 \rightarrow \text{Vertex at } (-4,10), \text{ maximum}$

Completing the Square

Converting to Vertex Form

Transform $f(x) = ax^2 + bx + c$ to $f(x) = a(x-h)^2 + k$

. . .

Process:

- 1. Factor out a from first two terms
- 2. Complete the square inside parentheses
- 3. Simplify to vertex form

. . .

i Note

Sorry, I know I said we don't need that!

Step-by-Step Example

Convert $f(x) = 2x^2 - 12x + 10$ to vertex form

- 1. Factor out 2: $f(x) = 2(x^2 6x) + 10$
- 2. Complete square: Need $\left(\frac{-6}{2}\right)^2=9$
- 3. Add and subtract: $f(x) = 2(x^2 6x + 9 9) + 10$
- 4. Rewrite: $f(x) = 2((x-3)^2 9) + 10$
- 5. Distribute: $f(x) = 2(x-3)^2 18 + 10$
- 6. Final form: $f(x) = 2(x-3)^2 8$
- 7. Vertex: (3, -8) with minimum value -8

Fast Exercise

Solve in 5 minutes, then we compare solutions

Convert $f(x) = 3x^2 + 18x + 20$ to vertex form by completing the square.

Business Applications

Price-Dependent Demand

When price affects quantity: Revenue becomes quadratic!

Basic Scenario:

- Demand function: Q = a bp (quantity depends on price)
- Revenue: $R = p \times Q = p(a bp)$
- Expanded: $R(p) = ap bp^2 = -bp^2 + ap$
- This is quadratic in p!

. . .

Ţip

Remember, we have seen this in the past!

Example: Concert Venue

A venue (capacity: 1000) has ticket demand: Q = 1000 - 20p

- Revenue function: $R(p) = p(1000 20p) = 1000p 20p^2$
- Optimal price: $p^* = -\frac{1000}{2(-20)} = \frac{1000}{40} = 25$ euros
- Tickets sold: Q = 1000 20(25) = 500
- Maximum revenue: $R(25) = 25 \times 500 = 12,500$

- At €0: Demand = 1000 (full capacity if free)
- At €50: Demand = 0 (too expensive, no one buys)

. . .

Warning

Note: This maximizes revenue, not necessarily profit!

Guided Practice - 20 Minutes

Individual Exercise Block

Work alone for 15 minutes, then we compare solutions

- 1. For $f(x) = x^2 8x + 12$:
 - a) Find the vertex using the formula
 - b) Determine if it's a maximum or minimum and find the y-intercept
- 2. A profit function is $P(x) = -3x^2 + 240x 3600$:
 - a) Find the number of units that maximizes profit
 - b) Calculate the maximum profit and the break-even points
- 3. Convert $f(x)=2x^2-12x+14$ to vertex form by completing the square, then identify the vertex.

Coffee Break - 15 Minutes

Projectile Motion

Product Launch Campaign

Marketing models new product awareness like projectile motion

$$A(t) = -2t^2 + 24t$$

where A is awareness score and t is weeks after launch.

- Peak awareness time: $t=-\frac{24}{2(-2)}=6$ weeks
- Maximum awareness: A(6) = -72 + 144 = 72 points
- Campaign ends when A(t)=0: at t=0 and t=12 weeks

. . .

Ţip

Campaign follows symmetric pattern: builds to peak at 6 weeks, then decays at same rate.

Campaign Awareness

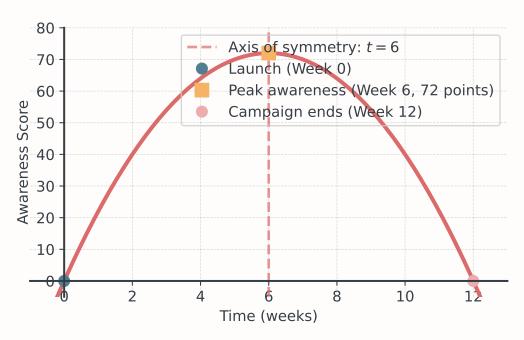


Figure 3: Product Launch Campaign: $A(t) = -2t^2 + 24t$

Area Optimization

Maximizing Area with Constraints

Classic problem: Maximum area with fixed perimeter

Rectangular Storage Area with 200 meters of fencing available. One side against a building (no fence) and we want to maximize storage area.

- Let x =width, y =length parallel to building
- Constraint: 2x + y = 200 (fencing)
- So: y = 200 2x
- Area: $A = xy = x(200 2x) = 200x 2x^2$
- Maximum at: $x=-\frac{200}{2(-2)}=50$ meters
- Dimensions: $50m \times 100m$, Area = 5000 m^2

Visualization

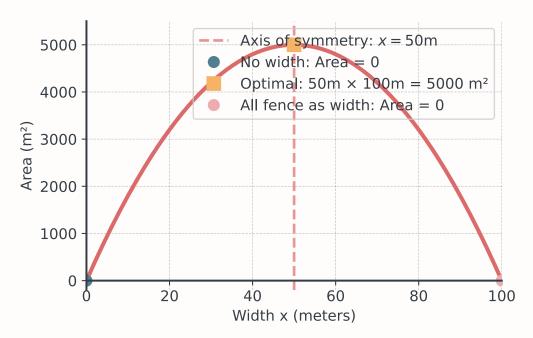


Figure 4: Maximizing Area: $A(x) = 200x - 2x^2$

Symmetric design: Too narrow OR too wide both reduce area - optimal is exactly in the middle!

Collaborative Problem-Solving - 30 Minutes

Comprehensive Business Optimization

The Scenario: Smart Tech Product Launch

Smart Tech is launching a new tablet. Market research indicates:

- At €200: would sell 8,000 units per month
- At €400: would sell 4,000 units per month
- At €600: would sell 0 units (too expensive)
- Production cost: €150 per tablet
- Fixed monthly costs: €200,000

Assume linear demand relationship.

Your Tasks:

Work in groups of 3-4 students

- 1. Derive the demand function Q(p) where p is price
- 2. Express revenue R(p) as a function of price (this will be quadratic!)
- 3. Find the price that maximizes revenue
- 4. Express profit $\Pi(p)$ as a function of price

- 5. Find the price that maximizes profit (different from revenue-maximizing price!)
- 6. If the company can only produce 5,000 tablets per month, should they use the profit-maximizing price? Explain.

Wrap-Up

Key Takeaways

- The vertex formula $x=-\frac{b}{2a}$ is your optimization tool
- Quadratic functions model scenarios with changing rates
- Maximum/minimum depends on sign of a
- Revenue maximization # Profit maximization
- Completing the square reveals the vertex form
- Real constraints may override mathematical optima

. . .

Every parabola has a minimum or a maximum point!

Final Assessment

5 minutes - Individual work

A small bakery's daily profit for chocolate cakes is modeled by:

$$P(x) = -x^2 + 14x - 33$$

where x is the price in euros.

- 1. Find the price that maximizes profit
- 2. Calculate the maximum daily profit
- 3. Find the break-even prices

Next Session Preview

Session 03-04: Transformations & Graphical Analysis

- Shifting functions horizontally and vertically
- · Stretching and reflecting graphs
- Reading graphs to understand business scenarios
- Function composition in business contexts
- Multiple representation mastery

Homework Assignment: Complete Tasks 03-03!