Session 02-05 - Exponential, Logarithmic & Complex Word Problems

Section 02: Equations & Problem-Solving Strategies

Dr. Nikolai Heinrichs & Dr. Tobias Vlćek

Entry Quiz

Test Your Equation-Solving Skills

10 minutes - individual work, then peer review

- a) Solve: $\frac{x+2}{x^2-4} + \frac{1}{x-2} = \frac{3}{x+2}$
- b) Solve: $\sqrt{x+5} \sqrt{x-3} = 2$
- c) Solve: $x^3 3x^2 x + 3 = 0$ (hint: try grouping)
- d) If $2^{x+1} = 3 \cdot 2^x 4$, find x
- e) Express as a single logarithm: $2\log_3(x) \log_3(x+2) + \log_3(3)$

. . .

Ţip

These combine all our equation types - prepare for today's problems!

Homework Presentations

Solutions from Tasks 02-04

20 minutes - presentation and discussion

- Present difficult problems
- Discuss investment return calculations
- Share strategies for work rate problems
- Review any challenging radical equations

. . .

i Note

Today we solve the most complex equation types - perfect preparation for your assessment!

Key Focus Today

Beyond Basic Properties

We already know logarithm properties from Session 01-05

Today's NEW focus:

- Solving exponential equations with different bases
- Solving logarithmic equations with multiple logs
- · Converting between forms strategically
- Handling equations that mix types
- Tackling complex multi-step word problems

. . .

! Important

Today is all about application and problem-solving!

Break - 10 Minutes

Advanced Exponential Equations

Equations with Different Bases

When you can't make bases equal

Solve: $3^x \cdot 5^{x-1} = 45$

• Rewrite: $3^x \cdot \frac{5^x}{5} = 45$

• Simplify: $\frac{3^{x} \cdot 5^{x}}{5} = 45$

• Combine: $\frac{(3.5)^x}{5} = 45$

• So: $15^x = 225 = 15^2$

• Therefore: x=2

. . .

Ţip

Look for ways to combine or separate bases strategically!

Mixed Exponential Systems

Solving simultaneous exponential equations

$$2^x + 2^y = 12$$

$$2^x - 2^y = 4$$

• Let $u = 2^x$ and $v = 2^y$ for simplicity

- System becomes: u + v = 12 and u v = 4
- Add equations: 2u = 16, so u = 8
- Subtract: 2v = 8, so v = 4
- Therefore: $2^x = 8 = 2^3$, giving x = 3
- And: $2^y = 4 = 2^2$, giving y = 2

Exponential Inequalities

New territory: solving inequalities

Solve: $2^{x+1} > 8^{x-1}$

- Rewrite right side: $8^{x-1} = (2^3)^{x-1} = 2^{3(x-1)}$
- Inequality becomes: $2^{x+1} > 2^{3x-3}$
- Since base 2 > 1, we can compare exponents directly
- x + 1 > 3x 3
- 4 > 2x
- Solution: x < 2

Advanced Logarithmic Equations

Equations with Mixed Bases

Using change of base strategically

Solve: $\log_2(x) \cdot \log_x(8) = 3$

- Use change of base: $\log_x(8) = \frac{\log_2(8)}{\log_2(x)} = \frac{3}{\log_2(x)}$
- Substitute: $\log_2(x) \cdot \frac{3}{\log_2(x)} = 3$
- Simplify: $3 = 3 \checkmark$
- $\bullet\,$ This is always true for any valid x!
- Domain restriction: $x > 0, x \neq 1$
- Solution: $x \in (0,1) \cup (1,\infty)$

Logarithmic Systems

Multiple equations with logs

$$\log(x) + \log(y) = 2$$

$$\log(x) - \log(y) = 1$$

- Add equations: $2\log(x) = 3$, so $\log(x) = 1.5$
- Therefore: $x = 10^{1.5} = 10\sqrt{10}$
- Subtract second from first: $2\log(y) = 1$
- So: $\log(y) = 0.5$, thus $y = \sqrt{10}$
- Check: $\log(10\sqrt{10}) + \log(\sqrt{10}) = 1.5 + 0.5 = 2 \checkmark$

Complex Word Problems

Investment Comparison

Clean compound interest problem

Two investments of €5,000 each. Investment A earns 8% annually. Investment B earns rate r annually. After 3 years, their combined value is \leq 12,000. Find rate r for Investment B.

- Investment A after 3 years: $5000(1.08)^3 = 6298.56$ \$
- Combined value equation: $6298.56 + 5000(1+r)^3 = 12000$
- Simplify: $5000(1+r)^3 = 5701.44$ and then $(1+r)^3 = 1.140288$
- Take cube root: $1 + r = \sqrt[3]{1.140288}$
- Using logs: $1+r=e^{\frac{\ln(1.140288)}{3}}=e^{0.0438}\approx 1.0448$
- Therefore: r = 0.0448 or about 4.5%

Population Competition Model

Ecological application with constraints

Two species compete for resources. Species A grows exponentially at 10% per year. Species B starts with twice the population but grows at rate r%. After 10 years, they have equal populations. Find r and the population ratio after 5 years.

- After 10 years: $P(1.1)^{10} = 2P(1+r)^{10}$

- Simplify: $(1.1)^{10} = 2(1+r)^{10}$ $(1+r)^{10} = \frac{(1.1)^{10}}{2}$ $1+r = \left(\frac{1.1^{10}}{2}\right)^{1/10} = \frac{1.1}{2^{0.1}}$
- $r \approx 0.033$ or 3.3%, after 5 years \$

Guided Practice

Mixed Equation Types

Work independently

- 1. Solve: $3^{2x} 4 \cdot 3^x + 3 = 0$
- $2 \{2^x \cdot 3^y = 72$ x + y = 5
- 3. A bacteria culture grows at 20% per hour. Under treatment, the hourly growth factor is reduced by a constant proportion r (so each hour the factor is 1.2(1-r)). After 5 hours, the treated population is 80% of the untreated population. Find r.

4

Coffee Break - 15 Minutes

Multi-Step Problem Solving

The IDEA Method in Action

Identify - Develop - Execute - Assess

A company's revenue follows $R=100\big(1-e^{-kt}\big)$ million \in , where t is years since launch. After 2 years, revenue is \in 40 million. Find k.

- $40 = 100(1 e^{-2k})$
- $0.4 = 1 e^{-2k}$
- $e^{-2k} = 0.6$
- $k = -\frac{\ln(0.6)}{2} \approx 0.255$
- Check: $R(2) = 100(1 e^{-0.51}) \approx 40 \checkmark$

Collaborative Problem-Solving

Epidemic Modeling Challenge

Work in groups

A disease spreads through a population of 10,000. The infected count follows:

$$I = \frac{10000}{1 + 99e^{-0.5t}}$$

- a) How many are initially infected?
- b) When will half the population be infected?
- c) If a vaccine reduces the spread rate by 40%, modify the model

. . .

aiT 🕐

This is a logistic growth model - different from pure exponential!

Wrap-up

Key Takeaways

Essential skills for the mock exam

- Exponential solving: Use logs strategically, not just mechanically
- Logarithmic solving: Check domains and validate solutions
- Mixed equations: Recognize when to use substitution
- Systems: Sometimes have no solution or infinitely many
- Word problems: Build models systematically
- Complex scenarios: Break into manageable steps

• Verification: Always check solutions make practical sense

Final Assessment

10 minutes - individual assessment

- 1. Solve: $4^x 3 \cdot 2^x = -2$
- 2. Solve: $\log_2(x+3) \log_4(x) = 2$
- 3. An investment doubles in 8 years at rate r%, then the rate increases to (r+2)%. How long for it to triple from the original amount?

Next Session Preview

Session 02-06: Foundation Assessment

MINI-MOCK EXAM 1

- 90 minutes under exam conditions
- Covers everything from Section 01 and 02
- Mix of pure math and applications
- About 8-10 problems of varying difficulty

. . .

!Important

Review all equation-solving methods!