Session 02-01 - Equations & Inequalities

Section 02: Equations & Problem-Solving Strategies

Dr. Nikolai Heinrichs & Dr. Tobias Vlćek

Entry Quiz

Quick Review from Section 01

10 minutes - individual work, then we review

- a) Factor completely: $x^6 7x^3 8$
- b) Simplify: $\frac{(3x^{-2}y^3)^{-2}\cdot (2x^3y^{-1})^3}{6x^{-4}y^2}$
- c) If $2^{x+1} + 2^x = 24$, find x
- d) Rationalize and simplify: $\frac{3}{\sqrt{5}+\sqrt{3}}-\frac{2}{\sqrt{5}-\sqrt{3}}$

. . .

Present your solutions and we review together!

Homework Presentations

Solutions Showcase

20 minutes - presentations and discussion

- Discuss your most challenging problem from Tasks 01-06
- Share your problem-solving approach
- Show potential alternative methods
- Ask questions about problems you found difficult

. . .

♀ Tip

Remember: Discussing tasks helps solidify your own understanding!

Key Concept Review

The IDEA Method

A method to help you assess tasks

- Identify: What type of problem are we solving?
- Develop: Create a plan using appropriate methods
- Execute: Carry out the solution carefully
- Assess: Check your answer makes sense

. . .

i Note

Today we apply IDEA to translating word problems into equations and inequalities!

Mathematical Language

Translation Fundamentals

Converting words to mathematical expressions

English Phrase	Symbol	Example
"is", "equals", "is equal to"	=	"The cost is ≤ 50 " $\rightarrow C = 50$
"less than", "fewer than"	<	"x is less than 10" $\rightarrow x < 10$
"at least", "no less than"	≥	"at least 5 units" $\rightarrow x \geq 5$
"at most", "no more than"	≤	"at most 100" $\rightarrow x \leq 100$
"increased by", "plus"	+	"price increased by $\mathbf{ \le 5}$ " $\rightarrow p+5$
"decreased by", "minus"	-	"reduced by 20%" $\rightarrow x - 0.2x$
"of", "times"	×	"30% of sales" $\rightarrow 0.3S$

Business Vocabulary Essentials

Key terms you'll encounter frequently

- Revenue (R): Total income = Price × Quantity
- Cost (C): Fixed costs + Variable costs
- Profit (P): Revenue Cost = R C
- Break-even: When Revenue = Cost (Profit = 0)
- Margin: Profit as percentage of revenue
- Markup: Increase from cost to selling price

. . .

Ţip

Always define your variables clearly before translating!

Practice IDEA with Tasks

Lets practice this! Try these on your own

Translate each phrase into an equation and solve:

- a) "Seven more than twice a number equals 31"
- b) "The quotient of a number and 4, decreased by 3, is 12"
- c) "40% of a number increased by 25 equals the number itself"

Break - 10 Minutes

Recap: Solving Multi-Step Equations

A systematic approach

- 1. Clear fractions: Multiply by LCD
- 2. Expand: Remove parentheses using distributive property
- 3. Collect terms: Variables on one side, constants on other
- 4. Isolate variable: Divide by coefficient
- 5. Verify: Substitute back into original equation

Example: Equation with Fractions

Let's work through this together

Solve:
$$\frac{2x-1}{3} + \frac{x+2}{4} = 5$$

- Step 1: Find LCD \rightarrow LCD = 12
- Step 2: Clear fractions $\rightarrow 12 \cdot \frac{2x-1}{3} + 12 \cdot \frac{x+2}{4} = 12 \cdot 5$
- Step 3: Simplify $\to 4(2x-1) + 3(x+2) = 60$
- Step 4: Expand $\rightarrow 8x 4 + 3x + 6 = 60$
- Step 5: Combine $\rightarrow 11x + 2 = 60$
- Step 6: Solve $\rightarrow 11x = 58$, so $x = \frac{58}{11}$

Recap: Inequalities

When things aren't necessaryly equal

- When multiplying or dividing by negative number, flip the sign!
 - Example: -2x > 6
 - ▶ Divide by -2: x < -3 (sign flipped!)
 - Why? Because the number line reverses!
- Inequalities are used to restrict the range of a variable
- Often Used to bound the solution space in business applications

Example: Business Application

Profit constraints in action

A company has costs C = 5000 + 20x and revenue R = 50x.

How many units must they sell to make at least €4000 profit?

- Set up: Profit = Revenue Cost ≥ 4000
- Equation: $50x (5000 + 20x) \ge 4000$
- Simplify: $30x 5000 \ge 4000$
- Solve: $30x \ge 9000$, so $x \ge 300$
- · Answer: Must sell at least 300 units

Practice

Individual Exercises

Work independently, then we'll discuss

- a) To equation: "Three times a number decreased by 7 equals 14"
- b) Solve: 3(2x-4) = 2(x+5)
- c) Solve the inequality: -3x + 7 < 16
- d) A taxi charges €3.50 base fare plus €1.20 per km. If a ride costs €15.50, how far was it?
- e) A store offers 30% discount. After discount, an item costs €42. What was the original price?

Application & Extension

Break-Even Analysis

Where total revenue equals total cost (profit = 0)

A coffee shop has fixed costs of €2,000/month (rent, utilities), variable cost of €1.50 per coffee and a selling price of €3.50 per coffee. How many coffees for break-even?

- Let x = number of coffees
- Cost: C = 2000 + 1.50x
- Revenue: R = 3.50x
- Break-even: 3.50x = 2000 + 1.50x
- Solve: 2x = 2000, so x = 1000 coffees

Mixture Problems

Combining different concentrations or values

An investor has €10,000 to split between bonds (4% return) and stocks (9% return). To earn €650 annually, how much in each?

- Let x = amount in bonds
- Then 10000 x = amount in stocks
- Income equation: 0.04x + 0.09(10000 x) = 650
- Simplify: 0.04x + 900 0.09x = 650
- Solve: -0.05x = -250, so x = 5000
- Answer: €5,000 in bonds, €5,000 in stocks

Coffee Break - 15 Minutes

Collaborative Problem-Solving

Group Task

Work in groups on the following problem

A company produces two products:

- Product A: Costs €15 to make, sells for €25
- Product B: Costs €20 to make, sells for €35
- Fixed costs: €5,000/month
- Production capacity: 500 units total
- Must produce at least 100 of each product

The tasks

Work in groups on the following problem

- a) Set up the profit equation
- b) Find the break-even point if producing equal quantities
- c) What mix maximizes profit?

Wrap-up & Synthesis

Key Takeaways

Essential skills from today

- Translation from words to equations is systematic
- Multi-step equations require organized approach
- Inequalities have special rules (flip when multiplying by negative!)
- Business problems often involve setting up profit/cost equations
- Break-even analysis is fundamental to business planning

Common Pitfalls to Avoid

Watch out for these!

- Forgetting to flip inequality signs
- Misinterpreting "less than" in word problems
- Not checking solutions in original equation

- Mixing up revenue and profit
- Forgetting units in final answers

Final Assessment

Individual work

A small business has monthly costs of \leq 3,000 plus \leq 12 per unit produced. They sell each unit for \leq 20.

- a) Write the profit equation
- b) How many units for break-even?
- c) How many units for €2,000 profit?

Next Session Preview

Session 02-02: Systems of Equations

- Solving systems by substitution and elimination
- Business applications with multiple constraints
- Introduction to linear programming

. . .

Preparation Tip

Review today's equation-solving techniques - they're the foundation for systems!