Session 01-02 - Language, Sets, and Number Systems

Section 01: Mathematical Foundations & Algebra

Dr. Nikolai Heinrichs & Dr. Tobias Vlćek

Your Confidence

Your Confidence in Topics

```
Error: The file was not found at ../data/tally_start_01.csv Please make sure the 'data-folder' directory and 'data.csv' file exist.
```

i Note

That's a good foundation for this course!:)

Entry Quiz

Quick Morning Check

Complete on paper - we'll review together

- a) Calculate: $\frac{2}{3} + \frac{3}{4}$
- b) Simplify: $x^{2} \cdot x^{3}$
- c) What is 15% of 240?
- d) Solve: |x| = 5

. . .

Ţip

Ready? Let's see how you did!

Number Systems

The Number Hierarchy

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{I}\subset\mathbb{R}$$

- $\mathbb{N} = \{1, 2, 3, ...\}$ Natural numbers
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ Integers

- $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$ Rationals
- I = Numbers that cannot be expressed as fractions Irrationals
- \mathbb{R} = All points on the number line Reals

. . .

i Note

Some books include 0 in \mathbb{N} , denoted \mathbb{N}_0 . For this course, we define $\mathbb{N} = \{1, 2, 3, ...\}$. The set including zero is denoted \mathbb{N}_0 .

Set Theory Basics

What is a Set?

A set is a well-defined collection of distinct objects.

Notation:

- Roster: $A = \{1, 2, 3, 4, 5\}$
- Set-builder: $B = \{x \in \mathbb{N} : x < 6\}$
- Interval: $C = [0, 1] = \{x \in \mathbb{R} : 0 \le x \le 1\}$

. . .

▲ Common Mistake

 $\{1,2,2,3\} = \{1,2,3\}$ — Sets contain only distinct elements!

Interval Notation

Interval notation uses brackets and parentheses to show whether endpoints are included or excluded:

Closed Intervals: Both endpoints included

- $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$
- Example: [1, 5] includes both 1 and 5

Open Intervals: Both endpoints excluded

- $(a,b) = \{x \in \mathbb{R} : a < x < b\}$
- Example: (1,5) excludes both 1 and 5

Mixed Intervals: One endpoint included, one excluded

- $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$ (includes a, excludes b)
- $(a, b] = \{x \in \mathbb{R} : a < x \le b\}$ (excludes a, includes b)

Mathematical Language

Why Mathematical Notation?

Mathematics is a universal language that allows us to:

- Express complex ideas precisely
- Communicate without ambiguity
- Solve problems systematically
- Build logical arguments

. . .

i Note

Clear notation prevents costly misunderstandings in contracts, financial models, and data analysis.

Essential Symbols - Sets

Symbol	Meaning	Example	
\in	Element of	$3 \in \mathbb{N}$	
∉	Not element of	$\pi\notin\mathbb{Q}$	
\subset	Subset	$\mathbb{N}\subset\mathbb{Z}$	
\subseteq	Subset or equal	$A \subseteq A$	
U	Union	$A \cup B$	
\cap	Intersection	$A\cap B$	
Ø	Empty set	$A\cap B=\emptyset$	

Essential Symbols - Logic

Symbol	Meaning	Example
A	For all	$\forall x \in \mathbb{R} : x^2 \ge 0$
∃	There exists	$\exists x \in \mathbb{Z} : x < 0$
\Rightarrow	Implies	$x = 2 \Rightarrow x^2 = 4$
\Leftrightarrow	If and only if	$x^2 = 4 \Leftrightarrow x = \pm 2$
\neg	Not	$\neg (x>0) \text{ means } x \leq 0$
\wedge	And	$p \wedge q$
V	Or	$p \lor q$

Let's Practice Reading

Translate to English:

- $\forall x \in \mathbb{R} : x + 0 = x$
 - ► "For all real numbers x, x plus zero equals x"
- $\exists n \in \mathbb{N} : n > 1000000$
 - "There exists a natural number n greater than one million"
- $x \in A \cap B \Rightarrow x \in A$
 - "If x is in the intersection of A and B, then x is in A"

Individual Exercise 01

Work individually first, then compare with neighbors

Express the following in set notation (choose which notation to use):

- a) The set of all even natural numbers
- b) The set of all real numbers between –1 and 1 (inclusive)
- c) The set of all integers divisible by 3

Break - 10 Minutes

Venn Diagrams

Venn diagrams are visual representations of sets and their relationships.

Components:

- Rectangle: Universal set U
- Circles: Individual sets
- Overlaps: Intersections
- Outside circles: Complements

Example:

- U = {1, 2, 3, 4, 5, 6, 7, 8}
- $A = \{1, 2, 3, 4\}$
- $B = \{3, 4, 5, 6\}$
- $A \cap B = \{3, 4\} \text{ (overlap)}$

. . .

Ţip

Venn diagrams help visualize complex set relationships!

Working with Numbers & Sets

Set Operations

Union: $A \cup B$

- All elements in A or B
- Example: $\{1,2\} \cup \{2,3\} = \{1,2,3\}$

Intersection: $A \cap B$

- All elements in A and B
- Example: $\{1,2\} \cap \{2,3\} = \{2\}$

Difference: $A \setminus B$

- Elements in A but not in B
- Example: $\{1, 2, 3\} \setminus \{2, 3\} = \{1\}$

Complement: \bar{A}

- All elements not in A
- Requires universal set U

Example: Employee Skills

A company tracks employee skills:

- $P = \{Python, Java, SQL, R\}$
- $D = \{SQL, Excel, Tableau, R\}$

Lets work together and find the following:

- $P \cup D$ (All skills available)
- $P \cap D$ (Versatile skills)
- $P \setminus D$ (Skills unique to Programmers)
- $D \setminus P$ (Skills unique to Data Analysts)

Classifying Numbers

Example 1

Classify $\frac{22}{7}$

- Can be written as $\frac{p}{q}$ \checkmark
- Therefore: $\frac{22}{7} \in \mathbb{Q}$
- Also: $\frac{22}{7} \in \mathbb{R}$
- But: $\frac{22}{7} \notin \mathbb{Z}$ (\approx 3.14...)

Example 2

Classify $\sqrt{9}$

- $\sqrt{9} = 3$
- Therefore: $3 \in \mathbb{N}$
- Also: $3 \in \mathbb{Z}, \mathbb{Q}, \mathbb{R}$

Common Mistakes

Be careful! $\pi pprox rac{22}{7}$ but $\pi
eq rac{22}{7}$

- π is irrational!
- No fraction exactly equals π

What about the following?

Is $0.\overline{45}$ rational?

Method

Let x = 0.454545...

- Multiply by 100: 100x = 45.454545...
- Subtract original: 100x x = 45.454545... 0.454545...
- Simplify: 99x = 45
- Solve: $x = \frac{45}{99} = \frac{5}{11}$

Yes! It's rational.

General Rule

For $0.\overline{abc}$ with n repeating digits:

- Multiply by 10^n
- Subtract original
- Solve for x

Group Exercise 01

How is this class structured?

Using set notation and a Venn diagram, find:

- a) How many study at least one subject?
- b) How many study only Mathematics?

. . .

We are going to do this one together. Any suggestions on how to start?

Individual Exercise 02

Number Classification

Classify each (list ALL applicable sets):

- a) $-\frac{8}{2}$
- b) $\sqrt{7}$
- c) $0.\overline{55}$

d)
$$\pi + 1$$

Break - 15 Minutes

Properties of Operations

The Big Three Properties

- 1. Commutative: Order doesn't matter
 - a + b = b + a
 - $a \times b = b \times a$
- 2. Associative: Grouping doesn't matter
 - (a+b) + c = a + (b+c)
 - $(a \times b) \times c = a \times (b \times c)$
- 3. Distributive: Multiplication distributes over addition
 - a(b+c) = ab + ac

Business Application

Revenue Calculation

A store sells 3 products:

- Product A: 50 units at €20 each
- Product B: 30 units at €20 each
- Product C: 40 units at €20 each

Method 1

$$(50 \times 20) + (30 \times 20) + (40 \times 20)$$

Method 2

 $20 \times (50 + 30 + 40)$ Distributive property!

Common Mistakes

• Remember: multiplication before addition!

Which Operations Commute?

Operation	Commutative?	Example
Addition	✓ Yes	3+5=5+3=8
Multiplication	✓ Yes	$3 \times 5 = 5 \times 3 = 15$
Subtraction	× No	$5-3\neq 3-5$
Division	× No	$6 \div 2 \neq 2 \div 6$

Operation	Commutative?	Example
Exponentiation	× No	$2^3 \neq 3^2$

. . .

▲ Common Mistake

Students somtimes assume all operations commute!

Percentage Calculations

Basic Percentage

Finding x% of a number:

Result = $\frac{x}{100} \times \text{Base}$

• Example: 15% of 240

- Solution: 15% of 240 = $\frac{15}{100} \times 240 = 36$

Percentage Change

Finding the change:

Change $\% = \frac{\text{New - Old}}{\text{Old}} \times 100\%$

• Example: From €5000 to €5500

• Solution: $\frac{5500-5000}{5000} \times 100\% = 10\%$

Compound Growth

Multiple periods:

 $Final = Initial \times (1+r)^n$

• Where r = rate (as decimal), n = periods

• Example: €5000 at 10% for 3 years

• Solution: $5000 \times (1.10)^3 = €6655$

Mathematical Logic Basics

Truth Tables for propositions \boldsymbol{p} and \boldsymbol{q}

p	q	$p \wedge q$ (and)	$p \lor q$ (or)	$p \Rightarrow q \text{ (imp.)}$
Т	Т	T	Т	Т
T	F	F	T	F
F	T	F	T	T
F	F	F	F	T

. . .

 \mathbb{Q} Understanding Implication $(p \Rightarrow q)$

Think of it as a promise: "If it is raining (p), then I will carry an umbrella (q)." The only way the promise is broken (the statement is False) is if it's raining (p=T) but I don't have my umbrella (q=F).

Soft Introduction to Proofs

A proof is a logical argument that shows a statement is true.

- The goal is to move from what we know (assumptions) to what we want to show (conclusion) using small, logical steps.
- A direct proof is the most common form:
- Assume p is true and show that q must logically follow.

. . .

Ţip

No need to worry about this topic too much! We just cover the absolute basics here just for you to know what a proof is.

Practice Time

Group Exercise 02

Working in pairs, determine if these statements are true or false:

- a) $\mathbb{Z} \subset \mathbb{Q}$
- b) $\sqrt{4} \in \mathbb{N}$
- c) $0.333... \in \mathbb{Q}$
- d) $\{1,2\} \subset \{1,2,3\}$
- e) $\emptyset \subset \mathbb{N}$

. . .

Take 5 minutes, then we'll discuss!

Wrap-up

Key Takeaways

- Mathematical notation is precise and universal
- Venn diagrams visualize set relationships
- Number systems form a hierarchy: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$
- Repeating decimals are rational numbers
- Operations have specific properties we can exploit

- Percentages and compound growth are essential for business
- Logic helps us reason systematically

For Next Time

Homework: Complete Tasks 01-02

Focus on:

- Set operations practice
- Number classification
- Proving/disproving properties
- One presentation problem

. . .

!Important

Entry quiz next session on today's material!