Course Cheatsheet

Section 05: Differential Calculus

Limits

Limit Notation

Definition: $\lim_{x\to a} f(x) = L$ means f(x) approaches L as x approaches a

Key Properties:

- $\lim_{x\to a} [f(x) + g(x)] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$
- $\bullet \ \lim\nolimits_{x \to a} [c \cdot f(x)] = c \cdot \lim\nolimits_{x \to a} f(x)$
- $\begin{array}{l} \bullet \ \lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \\ \bullet \ \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ (if denominator } \neq 0 \text{)} \end{array}$

One-Sided Limits

Notation	Meaning
$\lim_{x\to a^-} f(x)$	Limit from the left (values less than a)
$\lim_{x \to a^+} f(x)$	Limit from the right (values greater than a)

Limit exists if and only if: $\lim_{x\to a^-}f(x)=\lim_{x\to a^+}f(x)$

Limits at Infinity

For rational functions $\frac{P(x)}{Q(x)}$:

Degree Comparison	Result
$\deg(P) < \deg(Q)$	$\lim_{x \to \infty} = 0$
$\deg(P) = \deg(Q)$	$\lim_{x o \infty} = rac{a_n}{b_n}$ (ratio of leading coefficients)
deg(P) > deg(Q)	${\rm lim}_{x\to\infty}=\pm\infty$

Indeterminate Forms

Forms that require further analysis:

- $\frac{0}{0}$ Factor and cancel, or use L'Hôpital's rule
- $\frac{\check{}_{\infty}}{\infty}$ Divide by highest power, or use L'Hôpital's rule

Not indeterminate:

- $\frac{k}{0}$ where $k \neq 0 \rightarrow \pm \infty$ (vertical asymptote)

• $\frac{0}{k}$ where $k \neq 0 \rightarrow 0$

Continuity

Three Conditions for Continuity at $\boldsymbol{x} = \boldsymbol{a}$

1. f(a) exists (function is defined at a)

2. $\lim_{x\to a} f(x)$ exists (limit exists)

3. $\lim_{x \to a} f(x) = f(a)$ (limit equals function value)

Types of Discontinuities

Type	Description	Example
Removable	Limit exists but $\neq f(a)$ or $f(a)$ undefined	Hole in graph
Jump	Left and right limits exist but are dif- ferent	Step function
Infinite	Function approaches $\pm\infty$	Vertical asymptote

Visual Continuity Test

If you can draw the graph without lifting your pen, the function is continuous at that point.

Derivatives

Definition

Formal Definition:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Alternative Form:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Notation

Notation	Read as
f'(x)	"f prime of x"
$\frac{dy}{dx}$	"dy dx" (Leibniz notation)
$\frac{d}{dx}[f(x)]$	"derivative of f with respect to x"

Notation Read as

$$\frac{df}{dx} \parallel_{x=a}$$

Derivative evaluated at $\boldsymbol{x} = \boldsymbol{a}$

Geometric Interpretation

- f'(a) = slope of tangent line to f(x) at x = a
- Tangent line equation: y f(a) = f'(a)(x a)

Economic Interpretation

Function	Derivative	Interpretation
C(x) = Total Cost	C'(x) = Marginal Cost	Cost of producing one more unit
R(x) = Revenue	R'(x) = Marginal Revenue	Revenue from selling one more unit
P(x) = Profit	P'(x) = Marginal Profit	Profit from one more unit

Differentiation Rules

Basic Rules

Rule	Formula
Constant	$\frac{d}{dx}[c] = 0$
Power	$\frac{d}{dx}[x^n] = nx^{n-1}$
Constant Multiple	$\frac{d}{dx}[cf(x)] = c \cdot f'(x)$
Sum/Difference	$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$

Product and Quotient Rules

Product Rule:

$$\frac{d}{dx}[f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Quotient Rule:

$$\frac{d}{dx} \bigg[\frac{f(x)}{g(x)} \bigg] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$$

Memory Aid for Quotient Rule

"Low d-high minus high d-low, over the square of what's below"

Chain Rule

For composite functions f(g(x)):

$$\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$$

Leibniz notation: If y = f(u) and u = g(x):

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Common Patterns:

Function	Derivative
$(ax+b)^n$	$n(ax+b)^{n-1} \cdot a$
$\sqrt{f(x)}$	$\frac{f'(x)}{2\sqrt{f(x)}}$
$\frac{1}{f(x)}$	$\frac{-f'(x)}{[f(x)]^2}$

Most Common Mistake

Forgetting to multiply by the inner derivative! Always ask: "What's inside?"

Implicit Differentiation

When to Use

- Variables are intertwined (can't easily solve for y)
- Equations like $x^2+y^2=25, xy=k,$ or $L^{0.6}K^{0.4}=100$

Technique

- 1. Differentiate both sides with respect to \boldsymbol{x}
- 2. Apply chain rule to terms with y: $\frac{d}{dx}[y^n]=ny^{n-1}\cdot\frac{dy}{dx}$ 3. Collect all $\frac{dy}{dx}$ terms on one side 4. Solve for $\frac{dy}{dx}$

Example

For xy = 5000:

$$\frac{d}{dx}[xy] = \frac{d}{dx}[5000]$$
$$y + x\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = -\frac{y}{x}$$

Related Rates

Process

- 1. Identify all variables and their relationships
- 2. Write an equation relating the quantities
- 3. Differentiate both sides with respect to time t
- 4. Substitute known values
- 5. Solve for the unknown rate

Common Formulas

For quantity Q depending on variable x:

$$\frac{dQ}{dt} = \frac{dQ}{dx} \cdot \frac{dx}{dt}$$

Example: If $R = 50\sqrt{C}$ and customers grow at rate $\frac{dC}{dt}$:

$$\frac{dR}{dt} = \frac{25}{\sqrt{C}} \cdot \frac{dC}{dt}$$

Graphical Calculus

From f(x) to f'(x)

Feature of $f(x)$	Feature of $f'(x)$
Increasing	f'(x) > 0 (positive)
Decreasing	f'(x) < 0 (negative)
Local maximum	f'(x) = 0 (crosses from + to –)
Local minimum	f'(x) = 0 (crosses from – to +)
Steep slope	Large $ f'(x) $
Horizontal tangent	f'(x) = 0

From f'(x) to f(x)

Feature of f'(x) Feature of f(x)

f'(x) > 0	f is increasing
f'(x) < 0	f is decreasing
f'(x) = 0	f has horizontal tangent (possible extremum)
f^{\prime} increasing	f is concave up
f^{\prime} decreasing	f is concave down

Critical Points

Definition: x = c is a critical point if f'(c) = 0 or f'(c) is undefined

First Derivative Test:

Sign change of f'(x) Type of critical point

1. to –	Local maximum
- to +	Local minimum
No sign change	Neither (inflection point)

Second Derivative

Concavity:

- f''(x) > 0: Concave up (smile) \cup
- f''(x) < 0: Concave down (frown) \cap

Inflection Point: Where f''(x) = 0 and concavity changes

Second Derivative Test:

- If f'(c) = 0 and f''(c) > 0: Local minimum
- If f'(c) = 0 and f''(c) < 0: Local maximum
- If f'(c) = 0 and f''(c) = 0: Test is inconclusive

Business Applications

Marginal Analysis

Key Relationships:

- Profit is maximized when P'(x) = 0, equivalently when R'(x) = C'(x)
- Produce more if R'(x) > C'(x) (marginal revenue exceeds marginal cost)
- Produce less if R'(x) < C'(x)

Optimization Strategy

- 1. Find the function to optimize (profit, cost, revenue)
- 2. Take the derivative and set equal to zero
- 3. Solve for critical points
- 4. Test using second derivative or endpoints
- 5. Verify the answer makes business sense

Average Cost

Average Cost Function: $AC(x) = \frac{C(x)}{x}$

Minimum average cost occurs when AC'(x)=0, which happens when AC(x)=C'(x) (average cost equals marginal cost)

Quick Reference: Derivative Rules

Function	Derivative
c (constant)	0
x^n	nx^{n-1}
$\sqrt{x} = x^{1/2}$	$\frac{1}{2\sqrt{x}}$
$\frac{1}{x} = x^{-1}$	$-\frac{1}{x^2}$
$\frac{1}{x^n} = x^{-n}$	$-\frac{n}{x^{n+1}}$
e^x	e^x
ln(x)	$\frac{1}{x}$

Problem-Solving Strategies

Finding Derivatives

- 1. Simplify first if possible (rewrite radicals as powers)
- 2. Identify which rule(s) apply (power, product, quotient, chain)
- 3. Work systematically don't skip steps
- 4. Simplify the result

Optimization Problems

- 1. Draw a picture if applicable
- 2. Define variables and write the objective function
- 3. Express in terms of one variable using constraints
- 4. Differentiate and find critical points
- 5. Check endpoints if domain is restricted
- 6. Interpret the result in context

Common Mistakes to Avoid

- · Forgetting the chain rule inner derivative
- Using power rule on products: $(fg)' \neq f' \cdot g'$
- Forgetting that $\frac{dy}{dx}$ appears when differentiating y terms implicitly
- · Not checking if critical points are maxima or minima
- · Forgetting units in applied problems