Course Cheatsheet

Section 04: Advanced Functions

Polynomial Functions

General Form

Polynomial of degree n: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$

Where:

- $a_n \neq 0$ (leading coefficient)
- n is the degree (highest power)
- Domain: All real numbers

Polynomial Classification by Degree

Degree	Name	General Form	Example
0	Constant	f(x) = a	f(x) = 5
1	Linear	f(x) = ax + b	f(x) = 2x + 3
2	Quadratic	$f(x) = ax^2 + bx + c$	$f(x) = x^2 - 4$
3	Cubic	$f(x) = ax^3 + bx^2 + cx + d$	$f(x) = 2x^3 - x$
4	Quartic	$f(x) = ax^4 + \dots$	$f(x) = x^4 - 5x^2 + 4$

End Behavior Rules

Determined by degree and leading coefficient:

Degree	Leading Coefficient	Left End	Right End	Shape
Even	Positive $(a > 0)$	↑	↑	Both ends up
Even	Negative ($a < 0$)	\downarrow	\downarrow	Both ends down
Odd	Positive $(a > 0)$	\downarrow	\uparrow	Left down, right up
Odd	Negative ($a < 0$)	\uparrow	\downarrow	Left up, right down

Key Properties

Number of Zeros (x-intercepts):

- Maximum possible: equal to degree
- Can be less if roots are repeated or complex

Number of Turning Points:

• Maximum: degree - 1

 A turning point is where function changes from increasing to decreasing (or vice versa)

Multiplicity of Zeros:

• Odd multiplicity: Graph crosses x-axis

• Even multiplicity: Graph touches x-axis but doesn't cross

Power Functions & Roots

Power Functions

General form: $f(x) = kx^p$

Where k is coefficient and p is the power

Common Power Functions:

Function	Domain	Range	Key Features
$f(x) = x^2$	All real	$[0,\infty)$	Parabola, even function
$f(x) = x^3$	All real	All real	Cubic, odd function
$f(x) = x^{1/2} = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$	Square root
$f(x) = x^{-1} = \frac{1}{x}$	$x \neq 0$	$y \neq 0$	Reciprocal/Hyperbola

2

Root Functions

Square Root: $f(x) = \sqrt{x}$

• Domain: $x \ge 0$ • Range: $[0, \infty)$ • Always increasing

Cube Root: $f(x) = \sqrt[3]{x}$

Domain: All real numbersRange: All real numbers

Always increasing

• Passes through origin

General Root: $f(x) = \sqrt[n]{x}$

• Even n: Domain restricted to $x \geq 0$ • Odd n: Domain is all real numbers

Rational Exponents

Conversion Rules:

• $x^{1/n} = \sqrt[n]{x}$

• $x^{m/n} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$

•
$$x^{-n} = \frac{1}{x^n}$$

Properties:

•
$$(x^a)^b = x^{ab}$$

•
$$x^a \cdot x^b = x^{a+b}$$

•
$$\frac{x^a}{x^b} = x^{a-b}$$

Exponential Functions

Definition and Properties

Exponential function: $f(x) = a \cdot b^x$ where $b > 0, b \neq 1$

Key Components:

• a: Initial value (when x = 0)

• *b*: Base (growth/decay factor)

• x: Exponent (time, periods)

Growth vs Decay

Туре	Base	Behavior	Example
Exponential Growth	b > 1	Increases rapidly	$f(x) = 2^x$
Exponential Decay	0 < b < 1	Decreases rapidly	$f(x) = (0.5)^x$

Standard Form: $f(t) = P_0 \cdot (1+r)^t$

• P_0 : Initial amount

r: Growth rate (positive) or decay rate (negative)

t: Time

The Natural Exponential: e

Euler's number: $e \approx 2.71828$

Continuous Growth: $f(t) = Pe^{rt}$

• Most natural model for continuous processes

• r > 0: continuous growth

• r < 0: continuous decay

Applications:

• Compound interest: $A = Pe^{rt}$

• Population growth

• Radioactive decay

· Bacterial growth

Exponential Properties

Essential Rules:

- $b^x \cdot b^y = b^{x+y}$
- $\frac{b^x}{b^y} = b^{x-y}$
- $\bullet \ (b^x)^y = b^{xy}$
- $b^0 = 1$
- $b^{-x} = \frac{1}{b^x}$

Doubling and Half-Life

Doubling Time: Time for quantity to double - If $P(t) = P_0 \cdot 2^{t/T_d}$, then T_d is doubling time

Half-Life: Time for quantity to reduce by half - If $P(t) = P_0 \cdot (0.5)^{t/T_h}$, then T_h is half-life

Logarithmic Functions

Definition

Logarithm is the inverse of exponential:

$$\log_b(x) = y \Leftrightarrow b^y = x$$

Key Points:

- $\log_b(b) = 1$
- $\log_b(1) = 0$
- $\log_b(b^x) = x$
- $b^{\log_b(x)} = x$

Common Logarithms

Common Log (base 10): $\log(x)$ or $\log_{10}(x)$ - Used in science, pH scale, Richter scale

Natural Log (base e): $\ln(x)$ or $\log_e(x)$ - Used in calculus, continuous growth - $\ln(e)=1$

Logarithm Properties

Product Rule: $\log_b(xy) = \log_b(x) + \log_b(y)$

Quotient Rule: $\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$

Power Rule: $\log_b(x^n) = n \log_b(x)$

Change of Base: $\log_b(x) = \frac{\log_a(x)}{\log_a(b)} = \frac{\ln(x)}{\ln(b)}$

Domain and Range

For $f(x) = \log_b(x)$:

- Domain: $(0, \infty)$ (only positive numbers)
- Range: All real numbers

- Vertical asymptote at x=0
- Passes through (1,0) and (b,1)

Solving Logarithmic Equations

Strategy 1: Combine logs

$$\log(x) + \log(x - 3) = 1$$

$$\log(x(x-3)) = 1$$

$$x(x-3) = 10^1$$

Strategy 2: Convert to exponential

$$\log_2(x) = 5$$

$$x = 2^5 = 32$$

! Always Check Domain!

Solutions must satisfy x > 0 for all logarithmic arguments

Trigonometric Functions

The Unit Circle

Unit circle definition:

- Circle with radius 1 centered at origin
- Point on circle: $(\cos \theta, \sin \theta)$

Key Angles and Values:

Angle	Degrees	Radians	\sin	cos	tan
0°	0°	0	0	1	0
30°	30°	$\pi/6$	1/2	$\sqrt{3}/2$	$1/\sqrt{3}$
45°	45°	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60°	60°	$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
90°	90°	$\pi/2$	1	0	undefined

Degrees and Radians

Conversion:

- $180^{\circ} = \pi$ radians
- Degrees to radians: multiply by $\frac{\pi}{180}$ Radians to degrees: multiply by $\frac{180}{\pi}$

Why radians?

• Arc length: $s = r\theta$ (when θ in radians)

• Natural for calculus

• Simplifies many formulas

Basic Trigonometric Functions

Sine Function: $f(x) = \sin(x)$

• Domain: All real numbers

• Range: [-1, 1]

• Period: 2π

· Starts at origin

Cosine Function: $f(x) = \cos(x)$

• Domain: All real numbers

• Range: [-1, 1]

• Period: 2π

• Starts at maximum (1)

Tangent Function: $f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}$

• Domain: All real except $x = \frac{\pi}{2} + n\pi$

• Range: All real numbers

• Period: π

• Vertical asymptotes where cos(x) = 0

Key Trigonometric Identities

Reciprocal Identities:

•
$$\csc(x) = \frac{1}{\sin(x)}$$

• $\sec(x) = \frac{1}{\cos(x)}$

•
$$\sec(x) = \frac{1}{\cos(x)}$$

•
$$\cot(x) = \frac{1}{\tan(x)}$$

Even/Odd Properties:

•
$$\cos(-x) = \cos(x)$$
 (even)

•
$$\sin(-x) = -\sin(x)$$
 (odd)

Transformations of Trigonometric Functions

General form: $f(x) = A\sin(B(x-C)) + D$

Parameter	Effect	Name
A	Vertical stretch by $\parallel A \parallel$	Amplitude
B	Horizontal compression by $\parallel B \parallel$	Frequency factor
C	Horizontal shift right by ${\cal C}$	Phase shift

Period: $\frac{2\pi}{|B|}$ (for sine and cosine)

Example: $f(x) = 3\sin(2x - \pi) + 1$

• Amplitude: 3 • Period: $\frac{2\pi}{2}=\pi$ • Phase shift: $\frac{\pi}{2}$ right • Midline: y=1

Business Applications

Seasonal Patterns:

- Sales cycles
- Temperature variations
- Demand fluctuations

Example: Seasonal Revenue

$$R(t) = 50 + 20\sin\left(\frac{2\pi}{12}(t-3)\right)$$

- Average revenue: €50k - Seasonal variation: ±€20k - Period: 12 months - Peak: Month 6 (June)

Function Transformations (Universal)

The Transformation Framework

Standard form: $g(x) = a \cdot f(b(x - h)) + k$

Order of transformations:

- 1. Horizontal shift: h (inside function)
- 2. Horizontal stretch/compress: b (inside function)
- 3. Vertical stretch/compress: a (outside function)
- 4. Vertical shift: k (outside function)

Universal Transformation Rules

Transformation	Formula	Effect
Shift up	f(x) + k	Move up k units
Shift down	f(x) - k	Move down k units
Shift right	f(x-h)	Move right h units
Shift left	f(x+h)	Move left h units

Transformation	Formula	Effect
Vertical stretch	$a \cdot f(x)$, $\parallel a \parallel > 1$	Stretch by factor \parallel $a \parallel$
Vertical compress	$a\cdot f(x)\text{, }0<\parallel a\parallel<1$	Compress by factor $\parallel a \parallel$
Horizontal stretch	$f(bx), 0 < \parallel b \parallel < 1$	Stretch by factor $1/\parallel b\parallel$
Horizontal compress	$f(bx), \parallel b \parallel > 1$	Compress by factor $1/\parallel b \parallel$
Reflect over x-axis	-f(x)	Flip upside down
Reflect over y-axis	f(-x)	Flip left-right

Inside vs Outside

- Inside changes (affect x): Work opposite to intuition
- Outside changes (affect y): Work as expected

The 4-Step Method for Transformations

- 1. Identify base function
- 2. Find key points (intercepts, max/min, asymptotes)
- 3. Track transformations systematically
- 4. Verify with test point

Rational Functions

Definition and Structure

Rational function: $f(x) = \frac{P(x)}{Q(x)}$ where P and Q are polynomials

Key components:

- Numerator P(x): Determines zeros (x-intercepts)
- Denominator Q(x): Determines vertical asymptotes
- Degree comparison: Determines horizontal/oblique asymptotes

Domain

Domain: All real numbers except where Q(x) = 0

Steps to find domain: 1. Set denominator equal to zero 2. Solve for x 3. Exclude these values from domain

Asymptotes and Holes

Vertical Asymptotes:

- Occur where denominator = 0 (after cancellation)
- Graph approaches $\pm \infty$
- To find: Solve Q(x) = 0 after simplifying

Horizontal Asymptotes (comparing degrees):

Condition	Horizontal Asymptote
deg(P) < deg(Q)	y = 0
deg(P) = deg(Q)	$y=rac{a_n}{b_n}$ (ratio of leading coefficients)
deg(P) > deg(Q)	No horizontal asymptote

Oblique (Slant) Asymptotes:

- When deg(P) = deg(Q) + 1
- Find by polynomial long division
- Graph approaches this line as $x \to \pm \infty$

Holes (Removable Discontinuities):

- · Occur when factor cancels from numerator and denominator
- To find: Factor completely, cancel common factors
- Point where hole occurs: (a, f(a)) where factor is (x a)

Systematic Analysis Process

Always follow this order:

- 1. Factor completely (both numerator and denominator)
- 2. Cancel common factors \rightarrow These become holes
- 3. Find vertical asymptotes (remaining zeros of denominator)
- 4. Find horizontal/oblique asymptotes (degree comparison)
- 5. Find x-intercepts (zeros of simplified numerator)
- 6. Find y-intercept (evaluate at x = 0 if defined)

Example:
$$f(x) = \frac{x^2-4}{x^2-x-2}$$

- 1. Factor: $f(x)=\frac{(x-2)(x+2)}{(x-2)(x+1)}$ 2. Cancel: $f(x)=\frac{x+2}{x+1}$, $x\neq 2$ (hole at x=2)
- 3. Vertical asymptote: x = -1
- 4. Horizontal asymptote: y = 1 (equal degrees, ratio 1/1)
- 5. x-intercept: x = -2
- 6. y-intercept: f(0) = 2
- 7. Hole at: $(2, \frac{4}{3})$

Business Applications

Average Cost Functions:

$$AC(x) = \frac{C(x)}{x} = \frac{FC + VC \cdot x}{x} = \frac{FC}{x} + VC$$

- Vertical asymptote at x = 0
- Horizontal asymptote at y = VC (variable cost per unit)
- As production increases, average cost approaches variable cost

Business Applications Summary

Exponential Growth/Decay Models

Investment Growth:

$$A(t) = P(1+r)^t$$
 or $A(t) = Pe^{rt}$

Population Models:

- Growth: $P(t) = P_0 e^{kt}$ where k > 0
- Decay: $P(t) = P_0 e^{-kt}$ where k > 0

Depreciation:

• Declining balance: $V(t) = V_0(1-r)^t$

Periodic Business Patterns

Revenue Seasonality:

$$R(t) = R_0 + A \sin \biggl(\frac{2\pi}{12} (t - \phi) \biggr)$$

Where:

- R_0 : Average revenue
- A: Seasonal amplitude
- ϕ : Phase shift (timing of peak)

Optimization with Functions

Revenue Maximization:

- For quadratic revenue: vertex formula
- For rational functions: calculus (Section 05)

Cost Minimization:

- Average cost minimum
- · Production efficiency

Problem-Solving Strategies

General Approach

- 1. Identify function type (polynomial, exponential, rational, etc.)
- 2. Check domain restrictions (denominators, square roots, logs)
- 3. Apply appropriate techniques
- 4. Verify results make practical sense

5. Consider constraints (production limits, budget)

Common Mistakes to Avoid

- Logarithms: Forgetting domain restrictions (x > 0)
- Rational functions: Not factoring completely before finding asymptotes
- Transformations: Confusing inside vs outside changes
- Trigonometry: Mixing degrees and radians
- Exponential: Confusing growth rate with growth factor

Quick Reference: When to Use Each Function

Business Situation	Function Type	Example
Constant growth/decay rate	Exponential	$P(t) = P_0 \cdot b^t$
Seasonal patterns	Trigonometric	$S(t) = A\sin(Bt) + C$
Average cost	Rational	$AC(x) = \frac{C(x)}{x}$
Revenue optimization	Quadratic	R(x) = px = p(a - bp)
Multi-step processes	Composition	$(f\circ g)(x)$
Reverse relationships	Inverse	$f^{-1}(x)$