Course Cheatsheet

Section 03: Functions as Business Models

What is a Function?

A function is a rule that assigns to each input exactly one output

- Mathematical Definition: For every input x, there is exactly one output f(x)
- Business Perspective: A model showing cause and effect relationships
- Key Principle: Each input must have exactly one output (no ambiguity)

Function Notation

Traditional Equation	Function Notation	Meaning
y = 2x + 5	f(x) = 2x + 5	Function f maps input x to output $2x+5$
$y = x^2 - 3$	$g(x) = x^2 - 3$	Function g maps input x to output x^2-3
$y = \frac{100}{x}$	$h(x) = \frac{100}{x}$	Function h maps input x to output $\frac{100}{x}$

Function Evaluation:

- f(3) means "substitute x = 3 into function f"
- If f(x) = 2x + 5, then f(3) = 2(3) + 5 = 11
- If $g(x) = x^2 3$, then $g(-2) = (-2)^2 3 = 1$

Domain and Range

Domain: All Possible Input Values

Mathematical Restrictions:

Function Type	Restriction	Domain Rule
Rational: $f(x) = \frac{1}{x-a}$	Denominator ≠ 0	$x \neq a$
Square Root: $f(x) = \sqrt{x-a}$	Argument ≥ 0	$x \ge a$

Function Type	Restriction	Domain Rule
Logarithm: $f(x) = \log(x - a)$	Argument > 0	x > a
Polynomial: $f(x) = ax^n + \dots$	No restrictions	All real numbers

Business Restrictions:

- Quantities cannot be negative: $x \ge 0$
- Production capacity limits: $0 \le x \le \max$ capacity
- Time constraints: $0 \le t \le 24$ hours per day

Range: All Possible Output Values

Common Patterns:

Function Type	Range	Example
Linear: f(x) = ax + b	All real numbers	$(-\infty,\infty)$
Quadratic: $f(x) = x^2 + c$	$[c,\infty)$	$f(x) = x^2 + 2 \qquad \text{has} \\ \text{range} \ [2, \infty)$
Square Root: $f(x) = \sqrt{x}$	$[0,\infty)$	Non-negative outputs
Rational: $f(x) = \frac{1}{x}$	All except 0	$(-\infty,0)\cup(0,\infty)$

Four Ways to Represent Functions

1. Verbal Description

"Base cost of 100€ plus 3€ for each additional unit"

2. Algebraic Formula

$$C(x) = 100 + 3x$$

3. Numerical Table

$$\begin{array}{ccc}
x & C(x) \\
0 & 100 \\
10 & 130 \\
20 & 160
\end{array}$$

4. Graphical Plot

Visual representation showing the relationship between input and output

The Vertical Line Test

Rule: A graph represents a function if and only if every vertical line intersects it at most once.

Examples:

- Pass: Lines, parabolas opening up/down, exponential curves
- Fail: Circles, sideways parabolas, vertical lines

Why Important: Ensures each input has exactly one output (function definition)

Function Evaluation Strategies

Direct Substitution

If
$$f(x) = 3x^2 - 5x + 2$$
, find $f(4)$: - $f(4) = 3(4)^2 - 5(4) + 2 = 3(16) - 20 + 2 = 48 - 20 + 2 = 30$

Piecewise Functions

When function has different rules for different input ranges:

$$f(x) = \begin{cases} 2x + 1 & \text{if } x < 0 \\ x^2 & \text{if } x \ge 0 \end{cases}$$

- f(-3) = 2(-3) + 1 = -5 (use first rule since -3 < 0)
- $f(5) = 5^2 = 25$ (use second rule since $5 \ge 0$)

Key Vocabulary

- Function: Rule assigning exactly one output to each input
- Domain: Set of all possible input values
- Range: Set of all possible output values
- Independent Variable: Input variable (usually x)
- Dependent Variable: Output variable (usually y or f(x))
- Function Notation: f(x) read as "f of x"
- Vertical Line Test: Method to determine if graph represents function
- Fixed Costs: Business costs independent of production level
- Variable Costs: Business costs proportional to production level
- Break-Even Point: Where revenue equals cost (profit = 0)

Linear Functions in Detail

Forms of Linear Functions

- 1. Slope-Intercept Form: y = mx + b
- m: slope (rate of change/marginal change)
 - Positive: increasing function
 - Negative: decreasing function
 - Zero: horizontal line
- b: y-intercept (starting value/base value)
 - Value when x = 0
 - Often represents fixed costs or initial values

- 2. Point-Slope Form: $y y_1 = m(x x_1)$
- Useful when you know one point (x_1, y_1) and the slope m
- Best for modeling from observed data

Converting Between Forms:

- From two points $(\boldsymbol{x}_1, \boldsymbol{y}_1)$ and $(\boldsymbol{x}_2, \boldsymbol{y}_2)$:
 - Slope: $m = \frac{y_2 y_1}{x_2 x_1}$
 - Use point-slope form, then simplify to slope-intercept

Supply and Demand Functions

Demand Functions

Demand shows how quantity purchased depends on price

- General form: $Q_d = a bp$ (decreasing function)
 - ▶ a: maximum quantity when price = 0
 - ▶ b: price sensitivity (how much demand drops per unit price increase)
- Alternative form: $p=c-dQ_d$ (price as function of quantity)

Supply Functions

Supply shows how quantity produced depends on price

- General form: $Q_s = -c + dp$ (increasing function)
 - Often has positive y-intercept
 - ▶ d: production response to price changes

Market Equilibrium

Equilibrium occurs where supply equals demand: $Q_d=Q_s$

- Equilibrium price (p^*) : Market-clearing price
- Equilibrium quantity (Q^*) : Amount actually traded
- Graphically: Intersection point of supply and demand curves
- No shortage or surplus at equilibrium

Example:

- Demand: $Q_d = 500 50p$
- Supply: $Q_s = -100 + 100p$
- Set equal: 500 50p = -100 + 100p
- Solve: 600 = 150p, so $p^* = 4$
- Quantity: $Q^* = 500 50(4) = 300$ units

Cost-Volume-Profit

CVP Framework Components

Component	Formula	Description
Fixed Costs (FC)	Constant	Independent of production vol- ume
Variable Costs per unit (VC)	Per unit amount	Changes with production
Total Costs	$TC = FC + VC \times Q$	Sum of fixed and variable costs
Revenue	$R = P \times Q$	Price × Quantity
Profit	$\Pi = R - TC$	Revenue minus total costs
Contribution Margin	CM = P - VC	Profit per unit before fixed costs

5

CVP Key Calculations

Break-Even Point: $Q_{BE} = \frac{FC}{CM} = \frac{FC}{P-VC}$

Target Profit: $Q_{target} = \frac{\mathit{FC} + \mathit{Target\ Profit}}{\mathit{CM}}$

Margin of Safety: Actual sales - Break-even sales

Linear Modeling from Data

Steps to Create Linear Models

- 1. Identify variables (independent vs dependent)
- 2. Calculate slope between data points
- 3. Use point-slope form to find equation
- 4. Interpret parameters in business context

Example: Sales Forecasting

- Data shows consistent increase of 15 units per month
- Starting at 120 units in month 1
- Model: S(m) = 15m + 105

Depreciation Models

Linear (Straight-Line) Depreciation

Formula: $V(t) = V_0 - dt$

Where:

• V(t): Value at time t

• V_0 : Initial value

• d: Depreciation rate per period

• Useful life: $n = \frac{V_0}{d}$ periods

Example: Company Vehicle

• Purchase price: €30,000

Annual depreciation: €5,000

• Function: V(t) = 30,000 - 5,000t

• Fully depreciated after 6 years

Quadratic Functions

Standard Form

Formula: $f(x) = ax^2 + bx + c$

Key Components: - a: Direction and width - a>0: Opens upward (U-shape, has minimum) - a<0: Opens downward (n-shape, has maximum) - |a| larger \rightarrow Narrower parabola - b: Affects position of vertex - c: y-intercept (value when x=0)

Graph Shape: Parabola (curved, not straight like linear functions)

The Vertex Formula

Key Formula: $x_v = -\frac{b}{2a}$

For quadratic function $f(x)=ax^2+bx+c$: - Vertex x-coordinate: $x_v=-\frac{b}{2a}$ - Vertex y-coordinate: $f(x_v)=f\left(-\frac{b}{2a}\right)$ - Vertex represents: - Maximum if a<0 (parabola opens down) - Minimum if a>0 (parabola opens up) - Axis of symmetry: Vertical line $x=x_v$

Vertex Form

Alternative representation: $f(x) = a(x - h)^2 + k$

- Vertex: (h, k) directly visible!
- Direction: a (same as standard form)
- Advantage: Vertex immediately apparent
- Examples:
 - $f(x) = 2(x-3)^2 + 5 \rightarrow \text{Vertex at } (3,5), \text{minimum}$
 - $g(x) = -(x+4)^2 + 10 \rightarrow \text{Vertex at } (-4,10)$, maximum

Completing the Square

Convert from standard form to vertex form

Process:

- 1. Factor out a from first two terms
- 2. Complete the square inside parentheses: add and subtract $\left(\frac{b}{2a}\right)^2$

6

3. Simplify to vertex form $a(x-h)^2 + k$

Example: Convert $f(x) = 2x^2 - 12x + 10$

- 1. Factor out 2: $f(x) = 2(x^2 6x) + 10$
- 2. Complete square: Need $\left(\frac{-6}{2}\right)^2 = 9$
- 3. Add/subtract 9: $f(x) = 2(x^2 6x + 9 9) + 10$
- 4. Factor perfect square: $f(x) = 2((x-3)^2 9) + 10$
- 5. Distribute: $f(x) = 2(x-3)^2 18 + 10$
- 6. Final form: $f(x) = 2(x-3)^2 8 \rightarrow \text{Vertex at } (3, -8)$

Business Optimization with Quadratic Functions

Revenue Optimization (Price-Dependent Demand)

When demand depends on price: Q = a - bp

- Revenue: $R(p) = p \times Q = p(a bp) = ap bp^2$
- This creates a quadratic function in price
- Optimal price: $p^* = -\frac{a}{2(-b)} = \frac{a}{2b}$

Profit vs Revenue Maximization

Important Distinction:

- Revenue maximization: Ignores costs, focuses on $R(p) = p \times Q(p)$
- Profit maximization: Includes costs, $\Pi(p) = R(p) C(p)$
- Different optimal points: Revenue-maximizing price ≠ Profit-maximizing price

Cost Functions (Quadratic)

Some costs increase quadratically with production:

- Formula: $C(x) = ax^2 + bx + c$
- Interpretation:
 - ▶ Fixed costs: c
 - ► Increasing marginal costs: *a* > 0
- Minimum cost production: $x^* = -\frac{b}{2a}$ (if a > 0)

Profit Functions (Quadratic)

Common form: $P(x) = -ax^2 + bx + c$ (where a > 0)

- Opens downward: Has maximum profit
- Optimal production: $x^* = \frac{b}{2a}$
- Break-even points: Solve P(x) = 0

Advanced Applications

Area Optimization

Classic problem: Maximize area with constraint

Example: Rectangular storage with 200m fencing - One side against building (no fence needed) - Let x = width, y = length along building - Constraint: $2x + y = 200 \rightarrow y = 100$

200-2x - Area: $A(x)=x\cdot y=x(200-2x)=200x-2x^2$ - Maximum: $x^*=\frac{200}{2(2)}=50m$ - Optimal dimensions: $50\text{m}\times 100\text{m}=5{,}000\text{ m}^2$

Projectile Motion in Business

Applications: Product launch campaigns, market penetration

- Formula: $h(t) = -\frac{g}{2}t^2 + v_0t + h_0$
- Business analog: $A(t) = -at^2 + bt + c$ (awareness over time)
- Peak timing: $t^* = \frac{b}{2a}$

Example: Marketing Campaign - Awareness: $A(t)=-2t^2+24t$ - Peak at: $t=\frac{24}{2(2)}=6$ weeks - Maximum awareness: A(6)=72 points

Market Analysis Steps

- 1. Identify the quadratic relationship (revenue, profit, cost)
- 2. Find the vertex using $x = -\frac{b}{2a}$
- 3. Calculate optimal value by substituting back
- 4. Check constraints (production limits, market capacity)
- 5. Consider break-even points (solve f(x) = 0)

Key Business Insights

- Symmetric behavior: Equal results at equal distances from optimum
- Diminishing returns: Beyond optimal point, additional input reduces output
- Trade-offs: Revenue maximization vs profit maximization
- Constraints matter: Mathematical optimum may not be practically achievable

Function Transformations

Vertical Transformations

Moving graphs up or down

Transformation	Formula	Effect	Business Example
Vertical Shift Up	g(x) = f(x) + k (k > 0)	Entire graph moves up	Fixed cost increase
Vertical Shift Down	g(x) = f(x) - k (k > 0)	Entire graph moves down	Government subsidy
Vertical Stretch	$g(x) = a \cdot f(x)$ (a > 1)	Graph be- comes taller	Price increase across all products

Transformation	Formula	Effect	Business Example
Vertical Compression	$g(x) = a \cdot f(x) \text{ (0 < a < 1)}$		Discount pricing
Reflection over x-axis	g(x) = -f(x)	Graph flips upside down	Revenue becomes loss

Business Applications:

- Fixed Cost Changes: $C_{new}(x) = C(x) + k$ (rent increase of k)
- Percentage Markups: $R_{new}(x) = 1.2 \cdot R(x)$ (20% price increase)
- Tax Effects: $P_{net}(x) = 0.8 \cdot P(x)$ (20% tax rate)

Horizontal Transformations

Moving graphs left or right

Transformation	Formula	Effect	Business Example
Horizontal Shift Right	g(x) = f(x - h) (h > 0)	Graph moves right	Market entry delay
Horizontal Shift Left	g(x) = f(x+h) (h > 0)		Early product launch
Horizontal Stretch	g(x) = f(x/b) (b > 1)		Extended product lifecycle
Horizontal Compression	g(x) = f(bx) (b > 1)	Graph be- comes nar- rower	Accelerated lifecycle
Reflection over y-axis	g(x) = f(-x)	Graph flips left-right	Reverse time analysis

Key Point: Horizontal transformations are counterintuitive!

- f(x-3) shifts RIGHT by 3 units
- f(x+3) shifts LEFT by 3 units
- f(2x) compresses (makes narrower)
- f(x/2) stretches (makes wider)

Business Applications:

- Seasonal Adjustments: D(t) = f(t-3) (peak shifts 3 months later)
- Market Speed Changes: L(t) = f(2t) (2x faster product lifecycle)

• Time Scaling: Converting quarterly to monthly data

Combining Transformations

Standard Order for: $g(x) = a \cdot f(b(x - h)) + k$

- 1. Horizontal shift by h
- 2. Horizontal stretch/compress by factor b
- 3. Vertical stretch/compress by factor a
- 4. Vertical shift by k

Example: Transform $f(x) = x^2$ to $g(x) = -2(x-3)^2 + 5$

- 1. Shift right 3: $(x-3)^2$
- 2. Stretch vertically by 2: $2(x-3)^2$
- 3. Reflect over x-axis: $-2(x-3)^2$
- 4. Shift up 5: $-2(x-3)^2 + 5$

Reading Economic Graphs

Key Features to Identify

Graph Analysis Checklist:

- Intercepts: Starting values, break-even points
- Slope/Rate of change: Marginal values, trends
- Maximum/Minimum: Optimal points, extremes
- Intersections: Equilibrium, equal values
- Shape: Linear, quadratic, exponential patterns
- Domain/Range: Feasible regions, constraints

Business Graph Interpretation

Cost vs Revenue Analysis:

- y-intercept of cost: Fixed costs
- Intersection points: Break-even quantities
- Region between intersections: Profitable zone
- Maximum vertical distance: Optimal production level
- Slope comparisons: Marginal cost vs marginal revenue

Market Analysis:

- Supply/Demand intersection: Market equilibrium
- Shift patterns: Market changes over time
- Area under curves: Total consumer/producer surplus
- Steep vs flat curves: Price sensitivity (elasticity)

Function Composition

Understanding Composition

Composition models sequential processes: $(f \circ g)(x) = f(g(x))$

Key Points:

- Read as "f composed with g"
- Apply g first, then f to the result
- Output of g becomes input of f
- Order matters: $(f \circ g) \neq (g \circ f)$ usually
- Models multi-step business processes

Steps to Find Composition:

- 1. Calculate g(x) first
- 2. Substitute result into f
- 3. Simplify the expression

Common Business Compositions

- Manufacturing: Raw materials \rightarrow Components \rightarrow Finished products
- Finance: Local currency → Foreign currency → Investment returns
- Retail: Wholesale → Retail price → After-tax price
- Marketing: Leads → Conversions → Revenue

Domain Considerations

When composing functions, the domain of $(f \circ g)$ is restricted by:

- Domain of g (inner function)
- Values of g(x) must be in domain of f (outer function)

Inverse Functions

What is an Inverse Function?

An inverse function reverses the original function

Definition: If f(a) = b, then $f^{-1}(b) = a$

- The inverse "undoes" what the original function does
- Notation: $f^{-1}(x)$ (read as "f inverse of x")
- Not the same as $\frac{1}{f(x)}$ (reciprocal)

Testing for Invertibility

A function has an inverse if and only if it's one-to-one

Horizontal Line Test:

• Each horizontal line intersects the graph at most once

- Equivalently: each output comes from exactly one input
- For continuous functions: must be always increasing or always decreasing

Finding Inverse Functions

Step-by-Step Process:

- 1. Replace f(x) with y
- 2. Swap x and y
- 3. Solve for y
- 4. Replace y with $f^{-1}(x)$
- 5. Verify domain and range

Business Applications of Inverse Functions

Common Business Inverses:

- Demand \leftrightarrow Price: $Q=1000-20p \to p=\frac{1000-Q}{20}$ Cost \leftrightarrow Quantity: $C=500+25x \to x=\frac{C-500}{25}$
- Break-even Analysis: Reverse engineer production requirements

Graphical Properties of Inverses

- Reflection property: Graph of f^{-1} is reflection of f over line y = x
- Domain and range swap: Domain of f = Range of f^{-1}
- Intersection points: f and f^{-1} intersect on line y = x

Problem Solving

Systematic Problem-Solving Approach

- 1. Identify the context: What business situation is modeled?
- 2. Determine function type: Linear, quadratic, composed, inverse?
- 3. Identify variables: Input (independent) vs output (dependent)
- 4. Check domain restrictions: Mathematical and business constraints
- 5. Write the function: Express relationship algebraically with units
- 6. Apply appropriate techniques: Vertex formula, composition, transformations
- 7. Verify results: Check if outputs make business sense
- 8. Consider practical constraints: Production limits, budget restrictions

Common Pitfalls to Avoid

- Composition order: Remember $(f \circ g) \neq (g \circ f)$
- Domain issues: Always check for restrictions
- Units confusion: Track currency vs. quantity units carefully
- Inverse vs. reciprocal: $f^{-1}(x) \neq \frac{1}{f(x)}$
- · Optimization assumptions: Verify that mathematical optimum is practical