
Tutorial IX - Data Visualization
Programming with Python

Today’s Tutorial

From now on, it is rather difficult to give you tasks that you cannot solve within minutes by yourself with the
help of AI. Therefore, today’s tutorial will bemore open-ended than usual. All tasks are designed to be solved
together with AI, but you are nonetheless the human in the loop. Thus, your responsilities are to control the
AI, make the plots meaningful and visually attractive.

1

Simulation of a random walk for stock
prices

In this excercise, you will create a program that is able to simulate a random walk for stock prices. The
program should ask the user for the initial stock price, the number of days to simulate and the daily standard
deviation of the stock price. Then, the program should simulate 5 random walks of the price and visualize
the stock price over time. Feel free to use Cursor to help you write the code and visualize the results in an
attractive way.

TODO: Create a program that is able to simulate and visualize a random walk.
YOUR CODE HERE

2

Plotting data from the World Bank

Now, let’s plot some data that we are not creating ourselves. Head to the open data website of the World
Bank and find some data you are personally interested in. Then, download the data set and load it into a
pandas DataFrame. Finally, plot the data.

TODO: Plot some interesting data from the World Bank.
YOUR CODE HERE

3

https://data.worldbank.org
https://data.worldbank.org

Building an investment calculator with
PySide6

For this exercise, you’ll create a simple investment calculator application using PySide6. This tool will help
users calculate the future value of their investments based on different parameters.

Your task is to create a GUI application that:

1. Allows users to input:
• Initial investment amount
• Annual contribution
• Expected return rate (%)
• Investment period (years)

2. Calculates the future value of the investment
3. Displays the result in a formatted way

Here’s a solution for tasks 1-3 to get you started:

import sys
from PySide6.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout,

QLabel, QLineEdit, QPushButton, QGridLayout)
from PySide6.QtCore import Qt

class InvestmentCalculator(QMainWindow):
def __init__(self):

super().__init__()
self.setWindowTitle("Investment Calculator")
self.setMinimumSize(400, 300)

Create central widget and layout
central_widget = QWidget()
self.setCentralWidget(central_widget)
layout = QGridLayout(central_widget)

Create input fields
self.initial = QLineEdit()
self.annual = QLineEdit()
self.rate = QLineEdit()
self.years = QLineEdit()

Create labels
layout.addWidget(QLabel("Initial Investment ($):"), 0, 0)
layout.addWidget(self.initial, 0, 1)
layout.addWidget(QLabel("Annual Contribution ($):"), 1, 0)

4

layout.addWidget(self.annual, 1, 1)
layout.addWidget(QLabel("Expected Return Rate (%):"), 2, 0)
layout.addWidget(self.rate, 2, 1)
layout.addWidget(QLabel("Investment Period (years):"), 3, 0)
layout.addWidget(self.years, 3, 1)

Create calculate button
calc_button = QPushButton("Calculate")
calc_button.clicked.connect(self.calculate)
layout.addWidget(calc_button, 4, 0, 1, 2)

Create result label
self.result_label = QLabel()
self.result_label.setAlignment(Qt.AlignCenter)
layout.addWidget(self.result_label, 5, 0, 1, 2)

def calculate(self):
try:

initial = float(self.initial.text())
annual = float(self.annual.text())
rate = float(self.rate.text()) / 100
years = int(self.years.text())

Calculate future value
future_value = initial
for _ in range(years):

future_value = (future_value + annual) * (1 + rate)

Display result
self.result_label.setText(

f"Future Value: €{future_value:,.2f}"
)

except ValueError:
self.result_label.setText("Please enter valid numbers")

if __name__ == "__main__":
app = QApplication(sys.argv)
window = InvestmentCalculator()
window.show()
sys.exit(app.exec())

Try running this program and then enhance it with additional features such as:

• Including a reset button
• Adding a table showing year-by-year breakdown
• Creating a graph showing the investment growth
• Adding a dropdown menu to select different currencies

5

Plotting Stocks with a Dashboard

Finally, let’s plot some stock data by building a simple Dashboard. To do so, you can either use the streamlit
library, the nicegui library or the dash library. All of them are very popular libraries for building Dashboards
in Python.

1. Choose a stock of your interest and note down the ticker symbol.
2. Use the yfinance library to get the stock data.
3. Plot the stock data in a web app.

TODO: Plot some stock data with Dash, Streamlit or NiceGUI.
YOUR CODE HERE

If you have some time left, try to enhance your Dashboards with additional features.

• Adding a menu to switch between different stocks
• Adding a graph to compare multiple stocks

6

That’s it!

You can find the solutions to these exercises online in the associated GitHub repository, but we will also
quickly go over them in next week’s tutorial. To access the solutions, click on the Github button on the lower
right and search for the folder with today’s lecture and tutorial. Alternatively, you can ask ChatGPT or Claude
to explain them to you. Remember, the goal is not just to complete the exercises, but to understand the
concepts and improve your programming abilities.

7

	Today's Tutorial
	Simulation of a random walk for stock prices
	Plotting data from the World Bank
	Building an investment calculator with PySide6
	Plotting Stocks with a Dashboard
	That's it!

