
Lecture VII - NumPy and Pandas for Scientific Computing
Programming with Python

Dr. Tobias Vlćek

Quick Recap of the last Lecture

Modules

• Modules are .py files containing Python code
• They are used to organize and reuse code
• They can define functions, classes, and variables
• Can be imported into other scripts

. . .

Tip

We can import entire modules or individual functions, classes or variables.

Standard Libraries

• Python includes many built-in modules like:
– random provides functions for random numbers
– os allows interaction with the operating system
– csv is used for reading and writing CSV files
– re is used for working with regular expressions

Packages

• Packages are collections of modules
• Often available from the Python Package Index (PyPI)
• Install using pip install <package_name>
• Virtual environments help manage dependencies

. . .

Tip

Virtual environments are not that important for you right now, as they are mostly used if you work on
several projects with different dependecies at once.

1

NumPy Module

What is NumPy?

• NumPy is a package for scientific computing in Python
• Provides large, multi-dimensional arrays and matrices
• Wide range of functions to operate on these
• Python lists can be slow - Numpy arrays are much faster

. . .

Note

The name of the package comes from Numerical Python.

Why is NumPy so fast?

• Arrays are stored in a contiguous block of memory
• This allows for efficient memory access patterns
• Operations are implemented in the languages C and C++

. . .

Question: Have you heard of C and C++?

How to get started

1. Install NumPy using pip install numpy
2. In Thonny, Tools -> Manage Packages...
3. Import NumPy in a script using import numpy as np

. . .

import numpy as np
x = np.array([1, 2, 3, 4, 5]); type(x)

numpy.ndarray

. . .

Note

You don’t have to use as np. But it is a common practice to do so.

2

Creating Arrays

• The backbone of Numpy is the so called ndarray
• Can be initialized from different data structures:

import numpy as np

array_from_list = np.array([1, 1, 1, 1])
print(array_from_list)

[1 1 1 1]

import numpy as np

array_from_tuple = np.array((2, 2, 2, 2))
print(array_from_tuple)

[2 2 2 2]

Hetergenous Data Types

• It is possible to store different data types in a ndarray

import numpy as np

array_different_types = np.array(["s", 2, 2.0, "i"])
print(array_different_types)

['s' '2' '2.0' 'i']

. . .

Note

But it is mostly not recommended, as it can lead to performance issues. If possible, try to keep the
types homogenous.

Prefilled Arrays

Improve performance by allocating memory upfront

• np.zeros(shape): to create an array of zeros
• np.random.rand(shape): array of random values
• np.arange(start, stop, step): evenly spaced
• np.linspace(start, stop, num): evenly spaced

. . .

Note

The shape refers to the size of the array. It can have one or multiple dimensions.

3

Dimensions

• The shape is specified as tuple in these arrays
• (2) or 2 creates a 1-dimensional array (vetor)
• (2,2) creates a 2-dimensional array (matrix)
• (2,2,2) 3-dimensional array (3rd order tensor)
• (2,2,2,2) 4-dimensional array (4th order tensor)
• …

Computations

• We can apply operations to the entire array at once
• This is much faster than applying them element-wise

. . .

import numpy as np
x = np.array([1, 2, 3, 4, 5])
x + 1

array([2, 3, 4, 5, 6])

Arrays in Action

Task: Practice working with Numpy:

TODO: Create a 3-dimensional tensor with filled with zeros
Choose the shape of the tensor, but it should have 200 elements
Add the number 5 to all values of the tensor

Your code here
assert sum(tensor) == 1000

TODO: Print the shape of the tensor using the method shape()
TODO: Print the dtype of the tensor using the method dtype()
TODO: Print the size of the tensor using the method size()

Indexing and Slicing

• Accessing and slicing ndarray works as before
• Higher dimension element access with multiple indices

. . .

Question: What do you expect will be printed?

import numpy as np
x = np.random.randint(0, 10, size=(3, 3))
print(x); print("---")
print(x[0:2,0:2])

[[5 2 4]
[9 8 8]

4

[0 5 4]]

[[5 2]
[9 8]]

Data Types

• Numpy provides data types as characters
• i: integer
• b: boolean
• f: float
• S: string
• U: unicode

. . .

string_array = np.array(["Hello", "World"]); string_array.dtype

dtype('<U5')

Enforcing Data Types

• We can also provide the type when creating arrays

. . .

x = np.array([1, 2, 3, 4, 5], dtype = 'f'); print(x.dtype)

float32

. . .

• Or we can change them for existing arrays

x = np.array([1, 2, 3, 4, 5], dtype = 'f'); print(x.astype('i').dtype)

int32

. . .

Note

Note, how the types are specified as int32 and float32.

Sidenote: Bits

Question: Do you have an idea what 32 stands for?

. . .

• It’s the number of bits used to represent a number
– int16 is a 16-bit integer
– float32 is a 32-bit floating point number
– int64 is a 64-bit integer
– float128 is a 128-bit floating point number

5

Why do Bits Matter?

• They matter, because they can affect:
– the performance of your code
– the precision of your results

. . .

• That’s why numbers can have a limited precision!
– An int8 has to be in the range of -128 to 127
– An int16 has to be in the range of -32768 to 32767

. . .

Question: Size difference between int16 and int64?

Joining Arrays

• You can use concatenate two join arrays
• With axis you can specify the dimension
• In 2-dimensions hstack() and vstack() are easier

. . .

Question: What do you expect will be printed?

import numpy as np
ones = np.array((1,1,1,1))
twos = np.array((1,1,1,1)) *2
print(np.vstack((ones,twos))); print(np.hstack((ones,twos)))

[[1 1 1 1]
[2 2 2 2]]
[1 1 1 1 2 2 2 2]

Common Methods

• sort(): sort the array from low to high
• reshape(): reshape the array into a new shape
• flatten(): flatten the array into a 1D array
• squeeze(): squeeze the array to remove 1D entries
• transpose(): transpose the array

. . .

Tip

Try experiment with these methods, they can make your work much easier.

Speed Differences in Action

Task: Complete the following task to practice with Numpy:

6

TODO: Create a 2-dimensional matrix with filled with ones of size 1000 x 1000.
Afterward, flatten the matrix to a vector and loop over the vector.
In each loop iteration, add a random number between 1 and 10000.
TODO: Now, do the same with a list of the same size and fill it with random numbers.
Then, sort the list as you have done with the Numpy vector before.
You can use the `time` module to compare the runtime of both approaches.
import time
start = time.time()
Your code here
end = time.time()
print(end - start) # time in seconds

9.059906005859375e-06

7

Pandas Module

What is Pandas?

• Pandas is a data manipulation and analysis library
• It provides data structures like DataFrames and Series
• Tools for data cleaning, analysis, and visualization
• It can also be used to work with Excel files!

How to install Pandas

• In the last lecture, we have installed it with pip install pandas or with Thonny
• Now, import the package import pandas as pd

. . .

Note

You can also use a different abbreviation, but pd is the most common one.

Creating DataFrames

• DataFrames behave quite similar to Numpy arrays
• But they have row and column labels

. . .

import pandas as pd
df = pd.DataFrame({ # DataFrame is created from a dictionary

"Name": ["Tobias", "Robin", "Nils", "Nikolai"],
"Kids": [2, 1, 0, 0],
"City": ["Oststeinbek", "Oststeinbek", "Hamburg", "Lübeck"],
"Salary": [3000, 3200, 4000, 2500]}); print(df)

Name Kids City Salary
0 Tobias 2 Oststeinbek 3000
1 Robin 1 Oststeinbek 3200
2 Nils 0 Hamburg 4000
3 Nikolai 0 Lübeck 2500

8

Reading from CSV Files

df = pd.read_csv("employees.csv") # Reads the CSV file
print(df)

Name Age Department Position Salary
0 Alice 30 HR Manager 50000
1 Bob 25 IT Developer 60000
2 Charlie 28 Finance Analyst 55000
3 David 35 Marketing Executive 52000
4 Eve 32 Sales Representative 48000
5 Frank 29 IT Developer 61000
6 Grace 31 HR Assistant 45000
7 Hank 27 Finance Analyst 53000
8 Ivy 33 Marketing Manager 58000
9 Jack 26 Sales Representative 47000
10 Kara 34 IT Developer 62000
11 Leo 30 HR Manager 51000
12 Mona 28 Finance Analyst 54000
13 Nina 35 Marketing Executive 53000
14 Oscar 32 Sales Representative 49000
15 Paul 29 IT Developer 63000
16 Quinn 31 HR Assistant 46000
17 Rita 27 Finance Analyst 52000
18 Sam 33 Marketing Manager 59000
19 Tina 26 Sales Representative 48000
20 Uma 34 IT Developer 64000
21 Vince 30 HR Manager 52000
22 Walt 28 Finance Analyst 55000
23 Xena 35 Marketing Executive 54000
24 Yara 32 Sales Representative 50000
25 Zane 29 IT Developer 65000
26 Anna 31 HR Assistant 47000
27 Ben 27 Finance Analyst 53000
28 Cathy 33 Marketing Manager 60000
29 Dylan 26 Sales Representative 49000
30 Ella 34 IT Developer 66000
31 Finn 30 HR Manager 53000
32 Gina 28 Finance Analyst 56000
33 Hugo 35 Marketing Executive 55000
34 Iris 32 Sales Representative 51000
35 Jake 29 IT Developer 67000
36 Kyla 31 HR Assistant 48000
37 Liam 27 Finance Analyst 54000
38 Mia 33 Marketing Manager 61000
39 Noah 26 Sales Representative 50000
40 Olive 34 IT Developer 68000
41 Pete 30 HR Manager 54000
42 Quincy 28 Finance Analyst 57000
43 Rose 35 Marketing Executive 56000
44 Steve 32 Sales Representative 52000
45 Tara 29 IT Developer 69000
46 Umar 31 HR Assistant 49000

9

47 Vera 27 Finance Analyst 55000
48 Will 33 Marketing Manager 62000
49 Zara 26 Sales Representative 51000

Basic Operations

• Use the df.head() method to display the first 5 rows
• Use the df.tail() method to display the last 5 rows

. . .

df = pd.read_csv("employees.csv")
print(df.tail())

Name Age Department Position Salary
45 Tara 29 IT Developer 69000
46 Umar 31 HR Assistant 49000
47 Vera 27 Finance Analyst 55000
48 Will 33 Marketing Manager 62000
49 Zara 26 Sales Representative 51000

Information about the DataFrame

• Use df.info() to display information about a DataFrame

. . .

df = pd.read_csv("employees.csv")
print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 Name 50 non-null object
1 Age 50 non-null int64
2 Department 50 non-null object
3 Position 50 non-null object
4 Salary 50 non-null int64
dtypes: int64(2), object(3)
memory usage: 2.1+ KB
None

Statistics about a DataFrame

• Use df.describe() to display summary statistics
• Use the df.index attribute to access the index

. . .

df = pd.read_csv("employees.csv")
print(df.describe())

10

Age Salary
count 50.000000 50.000000
mean 30.320000 54980.000000
std 2.958488 6175.957333
min 25.000000 45000.000000
25% 28.000000 50250.000000
50% 30.000000 54000.000000
75% 33.000000 59750.000000
max 35.000000 69000.000000

Filtering DataFrames

• Use df['column_name'] to access a column
• Use the df[df['column'] > value] method to filter

. . .

df = pd.read_csv("employees.csv")
df_high_salary = df[df['Salary'] >= 67000]
print(df_high_salary)
print(df_high_salary.iloc[2]["Name"]) #Access the third row and the "Name" column
print(df_high_salary.loc[40]["Name"]) #Access the label 40 and the "Name" column

Name Age Department Position Salary
35 Jake 29 IT Developer 67000
40 Olive 34 IT Developer 68000
45 Tara 29 IT Developer 69000
Tara
Olive

Filtering in Action

Task: Complete the following task:

TODO: Load the employees.csv located in the git repository into a DataFrame
First, filter the DataFrame for employees with a manager position
Then, print the average salary of the remaining employees
Finally, print the name of the employee with the lowest salary

. . .

Note

Note, that we can use the mean()method on the Salary column, as it is a numeric column. In addition,
we can use the min() method on the Salary column to find the lowest salary.

11

Grouping DataFrames

Grouping

• Grouping is a powerful feature of Pandas
• Groups data by one or more columns
• And then perform operations
• Syntax is df.groupby('column').method()

. . .

df = pd.read_csv("employees.csv")
df = df.drop(columns=["Name", "Department"])
df.groupby(['Position']).mean() # Mean per position

Age Salary
Position

Analyst 27.5 54400.0
Assistant 31.0 47000.0
Developer 30.6 64500.0
Executive 35.0 54000.0
Manager 31.5 56000.0
Representative 29.0 49500.0

Grouping by Multiple Columns

• Group by multiple columns ['column1', 'column2']
• You can use lists or tuples to specify multiple columns

. . .

df = pd.read_csv("employees.csv")
df = df.drop(columns=["Name"])
Max per position and department
df.groupby(['Position', "Department"]).max()

Age Salary
Position Department

Analyst Finance 28 57000
Assistant HR 31 49000
Developer IT 34 69000
Executive Marketing 35 56000

12

Age Salary
Position Department

Manager HR 30 54000
Marketing 33 62000

Representative Sales 32 52000

Grouping with Aggregations

• As seen, we can use aggregation functions:
– sum(): sum of the values
– mean(): mean of the values
– max(): maximum of the values
– min(): minimum of the values
– count(): count of the values

Melting DataFrames

• Use pd.melt() to transform from wide to long

. . .

df = pd.read_csv("employees.csv").drop(columns=["Name"])
df = pd.melt(df, id_vars=['Position'])
print(df.head()); print(df.tail())

Position variable value
0 Manager Age 30
1 Developer Age 25
2 Analyst Age 28
3 Executive Age 35
4 Representative Age 32

Position variable value
145 Developer Salary 69000
146 Assistant Salary 49000
147 Analyst Salary 55000
148 Manager Salary 62000
149 Representative Salary 51000

Pandas in Action

Task: Complete the following task:

TODO: Load the employees.csv again into a DataFrame
First, group by the "Position" column and count the employees per position
Then, group by the "Department" column and calculate the sum of all other columns per

department↪

df = pd.read_csv("employees.csv")
Your code here

. . .

13

Note

Do you notice any irregularities while calculating the sum per department?

Concatenating DataFrames

• pd.concat() to concatenate along shared columns

df1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df2 = pd.DataFrame({"A": [7, 8, 9], "B": [10, 11, 12]})
df = pd.concat([df1, df2])
print(df)

A B
0 1 4
1 2 5
2 3 6
0 7 10
1 8 11
2 9 12

Joining DataFrames

• Use pd.join() to join DataFrames along columns
• Joining is done on the index by default!

df1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=['x', 'y', 'z'])
df2 = pd.DataFrame({"C": [7, 8, 9], "D": [10, 11, 12]}, index=['z', 'y', 'w'])
df = df1.join(df2)
print(df)

A B C D
x 1 4 NaN NaN
y 2 5 8.0 11.0
z 3 6 7.0 10.0

Merging DataFrames on Columns

• pd.merge(df_name, on='column', how='type')
• merge DataFrames along shared columns
• how specifies the type of merge

– inner: rows with matching keys in both DataFrames
– outer: rows from both are kept, missing values are filled
– left: rows from the left are kept, missing values are filled
– right: rows from right are kept, missing values are filled

Outer Merge

14

df3 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df4 = pd.DataFrame({"A": [2, 3, 4], "C": [7, 8, 9]})
df_merged = df3.merge(df4, on="A", how="outer")
print(df_merged)

A B C
0 1 4.0 NaN
1 2 5.0 7.0
2 3 6.0 8.0
3 4 NaN 9.0

Working with Excel Files

15

Working with Excel Files

Reading Excel Files

• Read using the pd.read_excel(file_path) function
• Write using the df.to_excel(file_path) method

. . .

import pandas as pd
df = pd.read_csv("employees.csv")
df.to_excel("employees.xlsx", index=False)

. . .

Note

Note, that you likely need to install the openpyxl package to be able to write Excel files, as it handles
the file format.

Advanced Excel file handling

df = pd.read_excel("employees.xlsx")

Writes to the Employees sheet and does not include row indices
df.to_excel("employees.xlsx", sheet_name="Employees", index=False)

Reads from the Employees sheet
df = pd.read_excel("employees.xlsx", sheet_name="Employees")

. . .

Note

And that’s it for todays lecture!
You now have the basic knowledge to start working with scientific computing. Don’t worry that we
haven’t applied Excel files yet, we will do so in the upcoming tutorial.

16

Literature

Interesting Books

• Downey, A. B. (2024). Think Python: How to think like a computer scientist (Third edition). O’Reilly.
Link to free online version

• Elter, S. (2021). Schrödinger programmiert Python: Das etwas andere Fachbuch (1. Auflage). Rhein-
werk Verlag.

. . .

For more interesting literature to learn more about Python, take a look at the literature list of this course.

17

https://greenteapress.com/wp/think-python-3rd-edition/
../general/literature.qmd

	Quick Recap of the last Lecture
	Modules
	Standard Libraries
	Packages

	NumPy Module
	What is NumPy?
	Why is NumPy so fast?
	How to get started
	Creating Arrays
	Hetergenous Data Types
	Prefilled Arrays
	Dimensions
	Computations
	Arrays in Action
	Indexing and Slicing
	Data Types
	Enforcing Data Types
	Sidenote: Bits
	Why do Bits Matter?
	Joining Arrays
	Common Methods
	Speed Differences in Action

	Pandas Module
	What is Pandas?
	How to install Pandas
	Creating DataFrames
	Reading from CSV Files
	Basic Operations
	Information about the DataFrame
	Statistics about a DataFrame
	Filtering DataFrames
	Filtering in Action

	Grouping DataFrames
	Grouping
	Grouping by Multiple Columns
	Grouping with Aggregations
	Melting DataFrames
	Pandas in Action
	Concatenating DataFrames
	Joining DataFrames
	Merging DataFrames on Columns
	Outer Merge
	Working with Excel Files

	Working with Excel Files
	Reading Excel Files
	Advanced Excel file handling

	Literature
	Interesting Books

