
Tutorial V - Handling Errors
Programming with Python

Basic exception handling

We start with a simple task to get you familiar with the concept of exception handling. You are given an
empty function that takes three numbers as input. It adds the first two numbers and then divides the result
by the third number. You have to use a try-except block to handle the ZeroDivisionError.

TODO: Write a function that takes three numbers as input. It adds the first two numbers
and then divides the result by the third number. Use a try-except block to handle the
ZeroDivisionError.

↪

↪

def safe_divide(add_1, add_2, div):
Your code here
pass

Test cases
print(safe_divide(5, 5, 2)) # Should print: 5.0
print(safe_divide(10, 0, 0)) # Should print: "Error: Division by zero"

1

Handling Multiple Exceptions

In this exercise, you’ll have to handle multiple exceptions in one try-except block, as we also want to catch
exceptions with a wrong type of input, e.g. when the user inputs a string instead of a number.

a) TODO: Modify the previous function to handle both ZeroDivisionError and TypeError
def safe_divide_v2(add_1, add_2, div):

Your code here
pass

Test cases
print(safe_divide_v2(5, 5, 2)) # Should print: 5.0
print(safe_divide_v2(10, 0, 0)) # Should print: "Error: Division by zero"
print(safe_divide_v2(2,4, "2")) # Should print: "Error: Invalid input types"

b) TODO: Write a function that asks the user for a number and then divides it by a
second number inputted by the user.↪

- Use a try-except block to handle the exceptions.
- Use a while loop to repeatedly ask the user for a number and divide it by a second

number until the user inputs "no" to the question "Do you want to continue?".↪

2

Raising your own exceptions

In this exercise, you’ll have to raise your own exceptionswhen the user inputs awrong type of input, e.g. when
the user inputs a string instead of a number. Yout task is to write a function that asks the user a username
and then checks if the username is valid. A valid username is considered to be a number that is at least 5
characters long and contains no spaces. If the username is not valid, you should raise an exception, tell the
user that the username is not valid and ask for a new username. You should only accept the username if it
is valid.

TODO: Write a function that asks the user for a username and then checks if the
username is valid.↪

- A valid username is considered to be a number that is at least 5 characters long and
contains no spaces.↪

- If the username is not valid, you should raise an exception, tell the user that the
username is not valid and ask for a new username.↪

- You should only accept the username if it is valid.

You can start by changing the code from the lecture:
class InvalidUsernameError(Exception):

pass

def get_valid_username():
while True:

try:
username = input("Please enter a username (no spaces): ")
if " " in username:

raise InvalidUsernameError("Username must not contain spaces.")
return username

except InvalidUsernameError as e:
print(f"Invalid username: {e}")
print("Please try again.")

3

Using Assertions

By using assertions, we can check if the input of a function is correct. If the assertion is not correct, an
AssertionError is raised. This is especially useful in the development phase to catch errors that should
not occur.

TODO: Write a function that calculates the area of a rectangle. Ensure that the length
and width are positive numbers.↪

def calculate_rectangle_area(length, width):
Your code here
pass

Test cases
print(calculate_rectangle_area(5, 3)) # Should print: 15
print(calculate_rectangle_area(-5, 3)) # Should raise AssertionError
print(calculate_rectangle_area(5, "3")) # Should raise AssertionError

4

Debugging

In the following exercise, you’ll have to debug a function that is supposed to return the sum of all even
numbers in a list. However, there is a bug in the code. Can you find it and fix it? Use either print statements,
assertions, or an IDE’s debugger to fix the code.

TODO: Fix the bug in the following function.
def sum_even_numbers(numbers):

total = 0
for num in numbers:

if num % 2 == 0:
total + num

return total

Test case
print(sum_even_numbers([1, 2, 3, 4, 5, 6])) # Should print: 12, but it's not working

correctly↪

Bonus challenge: Add error handling to make this function more robust

5

That’s it!

You can find the solutions to these exercises online in the associated GitHub repository, but we will also
quickly go over them in next week’s tutorial. To access the solutions, click on the Github button on the lower
right and search for the folder with today’s lecture and tutorial. Alternatively, you can ask ChatGPT or Claude
to explain them to you. Remember, the goal is not just to complete the exercises, but to understand the
concepts and improve your programming abilities.

6

	Basic exception handling
	Handling Multiple Exceptions
	Raising your own exceptions
	Using Assertions
	Debugging
	That's it!

