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Quick Recap of the last Lecture

Slicing

• With slicing we can get a range of elements from a sequence
• Syntax: sequence[start:stop:step]
• start is the index of the first element to include
• stop is the index of the first element to exclude
• step is the increment between indices

. . .

Tip

If left out, the step defaults to 1. Else, start defaults to 0 and stop defaults to the length of the sequence.
Negative indices can be used to slice from the end of the sequence.

Comparison Operators

• Comparison operators are used to compare two values
• The result of a comparison is a boolean value (True or False)
• Operators include: ==, !=, >, <, >=, <=

. . .

> Question: Is this True?

# Careful here!
one = 1
two = 1
print(one == two)

True

Control Structures

• Control structures allow us to control the flow of execution
• It includes conditional statements and loops
• Conditional statements: if, elif, else
• Loops: for and while
• Control flow statements (in loops): continue and break

. . .
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Note

The statement continue skips the rest of the current iteration and moves to the next one in a loop
while the break statement exits the loop entirely.
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Functions in Detail

What is a Function?

• Functions can accept inputs (parameters) and return outputs
• Encapsulate logic, making code easier to maintain
• Functions can be called multiple times from different part
• They help reduce code duplication and improve readability

# I'm a function.
type(print)

builtin_function_or_method

. . .

Important

Remember, methods are functions that are called on an object.

Some Built-in Functions already used

• print(): Print text to console
• input(): Read text from console
• len(): Get the length of a sequence
• range(): Generate a sequence of numbers
• round(): Round a number to a specified number of decimal places
• type(): Get the type of an object
• int(): Convert a string to an integer
• float(): Convert a string to a floating-point number
• str(): Convert an object to a string

Defining a Function

• Use the def keyword followed by the function name
• Inside parentheses we list the inputs (parameters)
• The code block within every function starts with a colon (:)
• It is indented, just as the loops from the last lecture

. . .
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def greet(a_parameter):
print(f"Hello, {a_parameter}!")

greet("Students")

Hello, Students!

. . .

Tip

It is common practice to leave out one line after the definition of a function, althoughwewill not always
do that in the lecture to save space on the slides.

Comment Functions

• It is good practice to include a comment at the top of your functions
• If you do it with three """, it will appear in the help menu

. . .

def greet():
"""
This function will be used later and has currently
absolutely no use for anything.
"""
pass # Necessary placeholder to avoid error

help(greet)

Help on function greet in module __main__:

greet()
This function will be used later and has currently
absolutely no use for anything.

Naming Functions (and Methods)

• Function names should be short, but descriptive
• Use underscores (_) instead of spaces in the names
• Avoid using Python keywords as function names (e.g., print)
• Try to avoid using built-in functions and methods that have a similar name (e.g., sum and len)

> Question: Which of the following is a good name for a function?

• myfunctionthatmultipliesvalues
• multiply_two_values

• multiplyTwoValues
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Function Parameters

• Parameters are variables that the function accepts
• They allow you to pass data to the function
• Try to name them as variables: short and meaningful
• We can also leave them out or define several inputs!

def greet():
print("Hello, stranger!")

greet()

Hello, stranger!

Function Arguments

• Arguments are the actual values passed to the function
• They replace the parameters in the function definition

. . .

> Question: What could be the correct arguments here?

def greet(university_name, lecture):
print(f"Hello, students at the {university_name}!")
print(f"You are in lecture {lecture}!")

# Your code here

Initializing Parameters

• We can also initialize parameters to a default value!
• To do this we use the = sign and provide it with a value
• This is called a keyword argument

def greet(lecture="Programming with Python"):
print(f"You are in lecture '{lecture}'!")

greet()
greet("Super Advanced Programming with Python")

You are in lecture 'Programming with Python'!
You are in lecture 'Super Advanced Programming with Python'!

. . .

Tip

This is especially useful when we want to avoid errors due to missing arguments!

Multiple Parameters

• We can also have multiple parameters in a function definition
• They are called positional arguments and are separated by commas
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• When we call them, they must be provided in the same order
• Alternatively, we could call them by name, as for example in this function call print("h","i",sep='')

. . .

> Question: What will be printed here?

def call_parameters(parameter_a, parameter_b):
print(parameter_a, parameter_b)

call_parameters(parameter_b="Hello", parameter_a="World")

World Hello

Function Return Values

• Functions can return values using the return statement
• The return statement ends the function
• It then returns the specified value

. . .

def simple_multiplication(a,b):
result = a*b
return result

print(simple_multiplication(2,21))

42

. . .

def simple_multiplication(a,b):
return a*b # even shorter!

print(simple_multiplication(2,21))

42

Access return values

• We can also save the return value from a function in a variable
• That way we can use it later on in the program

. . .

def simple_multiplication(a,b):
return a*b # even shorter!

result = simple_multiplication(2,21)
print(result)

42

Returning None

• If we don’t specify return, functions will return None
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def simple_multiplication(a,b):
result = a*b

print(simple_multiplication(2,21))

None

. . .

> Task: Come up with a function that checks whether a number is positive or negative. It returns "positive"
for positive numbers and "negative" for negative numbers. If the number is zero, it returns None.

. . .

Tip

You can also use multiple return statements in a function.

Recursion

• Recursion is a technique where a function calls itself
• Helps to break down problems into smaller problems

. . .

def fibonacci(n): # Classical example to introduce recursion
if n <= 1:

return n
else:

return fibonacci(n-1) + fibonacci(n-2)

print(fibonacci(6))

8

. . .

Note

Recursion can be a powerful tool, but it can also be quite tricky to get right.
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Scope

Function Scope

• Variables defined inside a function are local to that function
• They cannot be accessed outside the function

. . .

def greet(name):
greeting = f"Hello, {name}!"

print(greeting) # This will cause an error

. . .

> Question: Any idea how to access greeting?

Global Scope

• Variables defined outside all functions are in the global scope
• They can be accessed from anywhere in the program

. . .

greeting = "Hello, Stranger!"
def greet(name):

greeting = f"Hello, {name}!"
return greeting

print(greet("Students")) # Greet students
print(greeting) # Greet ????

Hello, Students!
Hello, Stranger!

. . .

Important

We don’t change global variables inside a function! The original value can still be accessed from out-
side the function.
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Global Keyword

• Still, we can change the value of greeting from inside a function!
• By using the global keyword to modify a global variable

. . .

greeting = "Hello, Stranger!"

def greet(name):
global greeting
greeting = f"Hello, {name}!"
return greeting

print(greet("Students")) # Greet students
print(greeting) # Greet students again

Hello, Students!
Hello, Students!

. . .

>Question: This can be confusing. Do you think you got the idea?
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Classes

Classes

• Classes are blueprints for creating objects
• They encapsulate data (attributes) and behavior (methods)
• Objects are instances of classes
• Methods are functions that are defined within a class

. . .

class Students: # Class definition
def know_answer(self): # Method definition

print(f"They know the answer to all questions.")

student = Students() # Object instantiation
student.know_answer()

They know the answer to all questions.

Self

• Classes can be quite tricky at first, especially the self keyword
• When we call self in a method, it refers to the object itself
• It is used to access the attributes and methods of the class
• self always needs to be included in method definitions

. . .

# This won't work as self is missing
class Students: # Class definition

def know_answer(): # Method definition without self
print(f"They know the answer to all questions.")

student = Students()
student.know_answer()

. . .

>Task: Try it yourself, what is the error?

Naming Classes

• Classes can be named anything, but it is common to use the plural form of their name (e.g., People)
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• CamelCase is used for class names, and snake_case is used for method and attribute names (e.g.,
TallPeople)

• Classes are usually defined in a file with the same name as their class, but with a .py extension

. . .

Question: Which of the following is a good class name? smart_student, SmartStudent, or SmartStudents

Class Attributes

• Class attributes are attributes that are shared by all class instances
• They are defined within the class but outside any methods

. . .

>Question: What do you think will happen here?

class Students: # Class definition
smart = True # Class attribute

student_A = Students() # Object instantiation student_A
student_B = Students() # Object instantiation student_B

print(student_A.smart)
print(student_B.smart)

True
True

Instance Attributes

• Instance attributes are attributes unique to each class instance
• They are defined within the __init__ method

class Student: # Class definition
def __init__(self, name, is_smart): # Method for initalization

self.name = name
self.smart = is_smart

def knows_answer(self): # Method to be called
if self.smart:

print(f"{self.name} knows the answer to the question.")
else:

print(f"{self.name} does not know the answer to the question.")

student = Student("Buddy",False) # Note, we don't need to call self here!
student.knows_answer()

Buddy does not know the answer to the question.

Inheritance

• Inheritance allows a class to inherit attributes and methods
• The class that inherits is called the subclass
• The class that is being inherited from is called the superclass
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. . .

Tip

Don’t worry! It can be quite much right now. Hang in there and soon it will get easier again!

Inheritance in Action

class Student: # Superclass
def __init__(self, name):

self.name = name
def when_asked(self):

pass

class SmartStudent(Student): # Subclass
def when_asked(self):

return f"{self.name} knows the answer!"

class LazyStudent(Student): # Subclass
def when_asked(self):

return f"{self.name} has to ask ChatGPT!"

>Task: Create two students. One is smart and the other one is lazy. Make sure that both students reaction
to a question is printed.

Encapsulation

• Encapsulation is the concept of bundling data (attributes) and methods (behavior) that operate on the
data into a single unit (class)

• It is a key aspect of object oriented programming (OOP)
• It helps in organizing code and controlling access

. . .

Note

Fortunately, this is an introduction to Python, so we won’t go into details of encapsulation.

The End

• Interested in more detail about classes and OOP?
• Check out access modifiers, getters and setters
• They are definitely a bit more complicated for beginners…
• Though they are worth learning if you build complex programs

. . .
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Note

And that’s it for todays lecture!
We now have covered the basics of funtions and classes. We will continue with some slightly easier
topics in the next lectures.

Literature {.title}

Interesting Book to dive deeper

• Thomas, D., & Hunt, A. (2019). The pragmatic programmer, 20th anniversary edition: Journey to mas-
tery (Second edition). Addison-Wesley.

. . .

Tip

A fantastic textbook to understand the principles of modern software development and how to create
effective software. Also available as a really good audiobook!

. . .

For more interesting literature to learn more about Python, take a look at the literature list of this course.
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