
Lecture VII - Pandas and AI

Programming with Python

Dr. Tobias Vl�ć ek
Kühne Logisti�s University Hamburg - Fall 2025

Quick Recap of the last Lecture

What is NumPy?
• NumPy is a pa�kage for s�ientifi� �omputing in Python
• Provides multi-dimensional arrays and matri�es
• Mu�h faster than Python lists for numeri�al operations
• Operations are implemented in C and C++

. . .

 Tip

NumPy arrays are stored in �ontiguous memory blo�ks, making operations very
effi�ient.

Creating Arrays
• Core data stru�ture is the ndarray
• Can �reate arrays from lists, tuples, or other data stru�tures
• Spe�ial fun�tions like:
‣ np.zeros() for arrays of zeros
‣ np.random.rand() for random values
‣ np.arange() for evenly spa�ed values
‣ np.linspace() for linearly spa�ed values

Working with Arrays
• Support for multi-dimensional operations
• Common operations:
‣ Element-wise arithmeti� (+, -, *, /)
‣ Array indexing and sli�ing
‣ Shape manipulation (reshape, flatten)
‣ Sorting and transposing

. . .

1

 Tip

NumPy operations are ve�torized, meaning they operate on entire arrays at on�e
rather than element by element.

NumPy in Action I
Task: Complete the following task:

TODO: Create an array with 10 evenly spaced numbers over the interval
from 0 to 73.

import numpy as np
YOUR CODE HERE

. . .

 Note

Note, that you �an always use the help() fun�tion to get more information about
a fun�tion. But be sure to import the pa�kage first, otherwise you will get an error.
To quit the help page, press q.

NumPy in Action II
Task: Complete the following task:

TODO: Take the following 3x3 array and reduce it to a 1D array.

import numpy as np
array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
YOUR CODE HERE

Pandas Basics

What is Pandas?
• Pandas is a data manipulation and analysis library
• It provides data stru�tures like DataFrames and Series
• Tools for data �leaning, analysis, and visualization
• It �an also be used to work with Ex�el files!

How to install Pandas
• In the last le�ture, we have installed it with uv install pandas
• Now, import the pa�kage import pandas as pd

. . .

2

 Note

You �an also use a different abbreviation, but pd is the most �ommon one.

Creating DataFrames
• DataFrames behave quite similar to Numpy arrays
• But they have row and �olumn labels

. . .

import pandas as pd
df = pd.DataFrame({ # DataFrame is created from a dictionary
 "Name": ["Tobias", "Robin", "Nils", "Nikolai"],
 "Kids": [2, 1, 0, 0],
 "City": ["Oststeinbek", "Oststeinbek", "Hamburg", "Lübeck"],
 "Salary": [3000, 3200, 4000, 2500]}); print(df)

 Name Kids City Salary
0 Tobias 2 Oststeinbek 3000
1 Robin 1 Oststeinbek 3200
2 Nils 0 Hamburg 4000
3 Nikolai 0 Lübeck 2500

Reading from CSV Files

df = pd.read_csv("supplementary/lec_08/employees.csv") # Reads the CSV file
print(df)

 Name Age Department Position Salary
0 Alice 30 HR Manager 50000
1 Bob 25 IT Developer 60000
2 Charlie 28 Finance Analyst 55000
3 David 35 Marketing Executive 52000
4 Eve 32 Sales Representative 48000
5 Frank 29 IT Developer 61000
6 Grace 31 HR Assistant 45000
7 Hank 27 Finance Analyst 53000
8 Ivy 33 Marketing Manager 58000
9 Jack 26 Sales Representative 47000
10 Kara 34 IT Developer 62000
11 Leo 30 HR Manager 51000
12 Mona 28 Finance Analyst 54000
13 Nina 35 Marketing Executive 53000
14 Oscar 32 Sales Representative 49000
15 Paul 29 IT Developer 63000
16 Quinn 31 HR Assistant 46000
17 Rita 27 Finance Analyst 52000
18 Sam 33 Marketing Manager 59000
19 Tina 26 Sales Representative 48000

3

20 Uma 34 IT Developer 64000
21 Vince 30 HR Manager 52000
22 Walt 28 Finance Analyst 55000
23 Xena 35 Marketing Executive 54000
24 Yara 32 Sales Representative 50000
25 Zane 29 IT Developer 65000
26 Anna 31 HR Assistant 47000
27 Ben 27 Finance Analyst 53000
28 Cathy 33 Marketing Manager 60000
29 Dylan 26 Sales Representative 49000
30 Ella 34 IT Developer 66000
31 Finn 30 HR Manager 53000
32 Gina 28 Finance Analyst 56000
33 Hugo 35 Marketing Executive 55000
34 Iris 32 Sales Representative 51000
35 Jake 29 IT Developer 67000
36 Kyla 31 HR Assistant 48000
37 Liam 27 Finance Analyst 54000
38 Mia 33 Marketing Manager 61000
39 Noah 26 Sales Representative 50000
40 Olive 34 IT Developer 68000
41 Pete 30 HR Manager 54000
42 Quincy 28 Finance Analyst 57000
43 Rose 35 Marketing Executive 56000
44 Steve 32 Sales Representative 52000
45 Tara 29 IT Developer 69000
46 Umar 31 HR Assistant 49000
47 Vera 27 Finance Analyst 55000
48 Will 33 Marketing Manager 62000
49 Zara 26 Sales Representative 51000

Basic Operations
• Use the df.head() method to display the first 5 rows
• Use the df.tail() method to display the last 5 rows

. . .

df = pd.read_csv("supplementary/lec_08/employees.csv")
print(df.tail())

 Name Age Department Position Salary
45 Tara 29 IT Developer 69000
46 Umar 31 HR Assistant 49000
47 Vera 27 Finance Analyst 55000
48 Will 33 Marketing Manager 62000
49 Zara 26 Sales Representative 51000

Information about the DataFrame
• Use df.info() to display information about a DataFrame

. . .

4

df = pd.read_csv("supplementary/lec_08/employees.csv")
print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Name 50 non-null object
 1 Age 50 non-null int64
 2 Department 50 non-null object
 3 Position 50 non-null object
 4 Salary 50 non-null int64
dtypes: int64(2), object(3)
memory usage: 2.1+ KB
None

Statistics about a DataFrame
• Use df.describe() to display summary statisti�s
• Use the df.index attribute to a��ess the index

. . .

df = pd.read_csv("supplementary/lec_08/employees.csv")
print(df.describe())

 Age Salary
count 50.000000 50.000000
mean 30.320000 54980.000000
std 2.958488 6175.957333
min 25.000000 45000.000000
25% 28.000000 50250.000000
50% 30.000000 54000.000000
75% 33.000000 59750.000000
max 35.000000 69000.000000

Filtering DataFrames
• Use df['column_name'] to a��ess a �olumn
• Use the df[df['column'] > value] method to filter

. . .

df = pd.read_csv("supplementary/lec_08/employees.csv")
df_high_salary = df[df['Salary'] >= 67000]
print(df_high_salary)
print(df_high_salary.iloc[2]["Name"]) #Access the third row and the "Name"
column
print(df_high_salary.loc[40]["Name"]) #Access the label 40 and the "Name"
column

5

 Name Age Department Position Salary
35 Jake 29 IT Developer 67000
40 Olive 34 IT Developer 68000
45 Tara 29 IT Developer 69000
Tara
Olive

Filtering in Action
Task: Complete the following task:

TODO: Load the employees.csv located in the git repository into a
DataFrame
First, filter the DataFrame for employees with a manager position
Then, print the average salary of the remaining employees
Finally, print the name of the employee with the lowest salary

. . .

 Note

Note, that we �an use the mean() method on the Salary �olumn, as it is a numeri�
�olumn. In addition, we �an use the min() method on the Salary �olumn to find the
lowest salary.

Grouping DataFrames

Grouping
• Grouping is a powerful feature of Pandas
• Groups data by one or more �olumns
• And then perform operations
• Syntax is df.groupby('column').method()

. . .

df = pd.read_csv("supplementary/lec_08/employees.csv")
df.groupby(['Position']).sum() # Sum per position

Name Age Department Salary

Position

Analyst
CharlieHankMonaR-
itaWaltBenGina-
LiamQuin�yVera

275 Finan�eFinan�eFi-
nan�eFinan�eFinan�e-
Finan�eFina…

544000

Assistant
Gra�eQuinnAnnaKy-
laUmar

155 HRHRHRHRHR 235000

6

Name Age Department Salary

Position

Developer
BobFrankKara-
PaulUmaZaneElla-
JakeOliveTara

306 ITITITITITITITITITIT 645000

Exe�utive
DavidNinaXe-
naHugoRose

175 MarketingMarketing-
MarketingMarketing-
Marketing

270000

Manager
Ali�eIvyLeoSamVin�e-
CathyFinnMiaPeteWill

315 HRMarketingHRMar-
ketingHRMarket-
ingHRMarketingHR…

560000

Representative
EveJa�kOs�arTina-
YaraDylanIrisNoah-
SteveZara

290 SalesSalesSalesSa-
lesSalesSalesSalesSa-
lesSalesS…

495000

Grouping Numeric Columns
• To prevent errors, we �an sele�t numeri� �olumns first
• Afterwards, perform the operation on the sele�ted �olumns
• Helps to avoid errors when grouping by non-numeri� �olumns
• Or drop �olumns by df.drop(columns=["column"])

. . .

df = pd.read_csv("supplementary/lec_08/employees.csv")
numeric_cols = df.select_dtypes(include=['number']).columns
print(df.groupby("Position")[numeric_cols].sum())

 Age Salary
Position
Analyst 275 544000
Assistant 155 235000
Developer 306 645000
Executive 175 270000
Manager 315 560000
Representative 290 495000

Grouping by Multiple Columns
• Group by multiple �olumns ['column1', 'column2']
• You �an use lists or tuples to spe�ify multiple �olumns

. . .

df = pd.read_csv("supplementary/lec_08/employees.csv")
df = df.drop(columns=["Name"])

7

Max per position and department
df.groupby(['Position', "Department"]).max()

Age Salary

Position Department

Analyst Finan�e 28 57000

Assistant HR 31 49000

Developer IT 34 69000

Exe�utive Marketing 35 56000

HR 30 54000Manager

Marketing 33 62000

Representative Sales 32 52000

Grouping with Aggregations
• We �an use different aggregation fun�tions:
‣ sum(): sum of the values
‣ mean(): mean of the values
‣ max(): maximum of the values
‣ min(): minimum of the values
‣ count(): �ount of the values

Pandas in Action
Task: Complete the following task:

TODO: Load the employees.csv again into a DataFrame
First, group by the "Position" column and count the employees per
position
Then, group by the "Department" column and calculate the mean of all
other columns per department
df = pd.read_csv("supplementary/lec_08/employees.csv")
Your code here

Combining DataFrames

Concatenating DataFrames
• pd.concat() to �on�atenate along shared �olumns

df1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df2 = pd.DataFrame({"A": [7, 8, 9], "B": [10, 11, 12]})
df = pd.concat([df1, df2])
print(df)

8

 A B
0 1 4
1 2 5
2 3 6
0 7 10
1 8 11
2 9 12

Joining DataFrames
• Use pd.join() to join DataFrames along �olumns
• Joining is done on the index by default!

df1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=['x', 'y', 'z'])
df2 = pd.DataFrame({"C": [7, 8, 9], "D": [10, 11, 12]}, index=['z', 'y',
'w'])
df = df1.join(df2)
print(df)

 A B C D
x 1 4 NaN NaN
y 2 5 8.0 11.0
z 3 6 7.0 10.0

Merging DataFrames on Columns
• pd.merge(df_name, on='column', how='type')

• merge DataFrames along shared �olumns
• how spe�ifies the type of merge
‣ inner: rows with mat�hing keys in both DataFrames
‣ outer: rows from both are kept, missing values are filled
‣ left: rows from the left are kept, missing values are filled
‣ right: rows from right are kept, missing values are filled

Outer Merge

df3 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df4 = pd.DataFrame({"A": [2, 3, 4], "C": [7, 8, 9]})
df_merged = df3.merge(df4, on="A", how="outer")
print(df_merged)

 A B C
0 1 4.0 NaN
1 2 5.0 7.0
2 3 6.0 8.0
3 4 NaN 9.0

Merging in Action
Task: Complete the following task:

9

df1 = pd.DataFrame({
 "Name": ["John", "Alice", "Bob", "Carol"],
 "Department": ["Sales", "IT", "HR", "Sales"],
 "Salary": [50000, 60000, 55000, 52000]})
df2 = pd.DataFrame({
 "Name": ["Alice", "Bob", "Dave", "Eve"],
 "Position": ["Developer", "Manager", "Analyst", "Developer"],
 "Years": [5, 8, 3, 4]})

TODO: Merge the two DataFrames on the "Name" column
Try different types of merges (inner, outer, left, right)
Observe and describe the differences in the results

Working with Excel Files

Reading Excel Files
• Read using the pd.read_excel(file_path) fun�tion
• Write using the df.to_excel(file_path) method

. . .

import pandas as pd
df = pd.read_csv("supplementary/lec_08/employees.csv")
df.to_excel("supplementary/lec_08/employees.xlsx", index=False)

. . .

 Note

Note, that you likely need to install the openpyxl pa�kage to be able to write Ex�el
files, as it handles the file format.

Advanced Excel file handling
We �an also spe�ify the sheet name when reading and writing

Writes to the Employees sheet and does not include row indices
df.to_excel("supplementary/lec_08/employees.xlsx", sheet_name="Employees",
index=False)

. . .

Reads from the Employees sheet
df = pd.read_excel("supplementary/lec_08/employees.xlsx",
sheet_name="Employees")
print(df.head())

10

 Name Age Department Position Salary
0 Alice 30 HR Manager 50000
1 Bob 25 IT Developer 60000
2 Charlie 28 Finance Analyst 55000
3 David 35 Marketing Executive 52000
4 Eve 32 Sales Representative 48000

Excel in Action
Task: Complete the following task:

TODO: Load the temperatures.xlsx file into a DataFrame
Look at the first few rows of the DataFrame
Then, print the average temperature per city

Melting DataFrames

Melting
• Sometimes, you want to transform a DataFrame
• Instead of wide format, you want long format
• This is useful for �ertain types of visualizations
• And when working with time series data

. . .

Question: Anybody ever heard of the terms?

Wide Format
For example, the following DataFrame is in wide format:

 Date Hamburg Los_Angeles Tokyo
0 2024-03-01 12.0 18.2 14.8
1 2024-03-02 9.8 23.0 17.6
2 2024-03-03 7.6 20.3 16.0
3 2024-03-04 10.1 21.1 13.4
4 2024-03-05 11.2 18.5 15.1
..
87 2024-05-27 12.4 24.5 24.9
88 2024-05-28 17.8 20.6 22.3
89 2024-05-29 16.2 20.4 20.2
90 2024-05-30 15.5 20.7 21.7
91 2024-05-31 12.6 22.0 22.9

[92 rows x 4 columns]

Long Format
The melting pro�ess transforms it into the following long format:

11

 Date City Temperature
0 2024-03-01 Hamburg 12.0
1 2024-03-02 Hamburg 9.8
2 2024-03-03 Hamburg 7.6
3 2024-03-04 Hamburg 10.1
4 2024-03-05 Hamburg 11.2
..
271 2024-05-27 Tokyo 24.9
272 2024-05-28 Tokyo 22.3
273 2024-05-29 Tokyo 20.2
274 2024-05-30 Tokyo 21.7
275 2024-05-31 Tokyo 22.9

[276 rows x 3 columns]

How to melt DataFrames
• Use pd.melt() to transform from wide to long
• Parameters:
‣ id_vars: �olumns to keep
‣ var_name: name of the new �olumn that will �ontain the names of the original

�olumns
‣ value_name: name of the new �olumn that will �ontain the values of the original

�olumns

. . .

df = pd.read_csv("supplementary/lec_08/employees.csv")
df = pd.melt(df, id_vars=['Position'], var_name='Variables',
value_name='Values')
print(df)

 Position Variables Values
0 Manager Name Alice
1 Developer Name Bob
2 Analyst Name Charlie
3 Executive Name David
4 Representative Name Eve
..
195 Developer Salary 69000
196 Assistant Salary 49000
197 Analyst Salary 55000
198 Manager Salary 62000
199 Representative Salary 51000

[200 rows x 3 columns]

Melting in Action
Task: Complete the following task:

12

TODO: Load and transform the temperatures.xlsx file by melting it
Expected output format:
Date City Temperature
0 2024-03-01 Hamburg 7.2
1 2024-03-01 Los_Angeles 18.5
2 2024-03-01 Tokyo 12.3
Then, print the maximum temperature per city by grouping by the "City"
column

Programming with AI

Using AI to generate code
• Coding by hand is not the only way to generate �ode
• Most likely, a lot of you have already used ChatGPT

. . .

How do

Large Language

Models work?

Photo by Taylor Vi�k on Unsplash

Large Language Models (LLMs)
• Think of them like advan�ed pattern re�ognition systems
• They have “read” massive amounts of text
• Books, websites, arti�les, �ode, and more
• Text is broken into tokens, parts of words or pun�tuation
• Based on patterns, they �an generate new text

Training LLMs
• Imagine learning a language by reading millions of books
• Learns patterns in how words and ideas �onne�t via tokens
• Inter�onne�ted nodes with weights representing patterns
• During training, these weights are adjusted
• On�e trained, applying them takes mu�h less ressour�es

Pattern Recognition
• Not like a sear�h engine!
• When asked, it looks for relevant patterns it learned
• Like having a huge library in its “memory” to draw from
• It �an find patterns between �on�epts and your question
• Knows only limited text at on�e (�ontext window)

Probability based responses
• After ea�h written token, it predi�ts “what should �ome next?”

13

• Like a advan�ed version of the word predi�tion on your phone
• Chooses the most likely next token based on training
• But �an’t a�tually “think” or “understand” like humans

Limitations
• No true understanding of �ause and effe�t
• Sometimes makes mistakes or “hallu�inates”
• Mostly only knows what it was trained on
• Can refle�t biases present in training data
• No emotional understanding (but �an simulate responses!)

Impact on Jobs
• Question: What do you think about their impa�t on jobs?
• Question: What are the impli�ations for us?
• Question: Can we use them to our advantage?

(Current) Choices for Programmers
• Github Copilot: Integrated into VS Code by Mi�rosoft
• Cursor: Fork of VS Code with AI assistan�e built in
• Aider: Chat interfa�e for AI to write �ode in the terminal
• Zed: Lightweight IDE with AI features

. . .

 Tip

Currently, Zed is my favorite one. But this might �hange in the future, as there is a
lot of �ompetition in this spa�e.

Getting started with AI in Zed
• You will need to �reate an a��ount (right top �orner)
• Some free usage per month, after that you need to pay
• For us, the free plan should be more than enough
• If you need more prompts, �reate an a��ount with OpenRouter
• Here you �an get an API key and use their free models

 Warning

If you use free models, be aware that your prompts are going to be used by the
providers and are not private. But for learning and experimenting, this should be
no issue.

Using Zed
• Open the folder with your tutorial files
• Create a new .py file

14

https://github.com/features/copilot
https://www.cursor.com/
https://aider.chat
https://www.zed.dev/
https://www.zed.dev/
https://openrouter.ai

• Press Ctrl + L to open the �hat

Asking for help
Task: Paste the following prompt in to the �hat:

Can you please write me a small number guessing game in python? It should work for
one player in the terminal. The player should guess a number between 1-10 and get
hints about whether his guess was too large or too small. After 3 tries, end the game if
he didn’t su��eed with a ni�e message.

. . .

Copy the generated �ode and paste it into your file.

More on Zed
• While working with Zed, it will suggest you �ode �hanges
• You �an a��ept or reje�t them
• The rest you will learn by doing!

. . .

 Note

And that’s it for todays le�ture!
You now have the basi� knowledge to start working with tabular data and AI!.

Literature

Interesting Books
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.

15

https://greenteapress.com/wp/think-python-3rd-edition/
../general/literature.qmd
../general/literature.qmd

	Quick Recap of the last Lecture
	What is NumPy?
	Creating Arrays
	Working with Arrays
	NumPy in Action I
	NumPy in Action II

	Pandas Basics
	What is Pandas?
	How to install Pandas
	Creating DataFrames
	Reading from CSV Files
	Basic Operations
	Information about the DataFrame
	Statistics about a DataFrame
	Filtering DataFrames
	Filtering in Action

	Grouping DataFrames
	Grouping
	Grouping Numeric Columns
	Grouping by Multiple Columns
	Grouping with Aggregations
	Pandas in Action

	Combining DataFrames
	Concatenating DataFrames
	Joining DataFrames
	Merging DataFrames on Columns
	Outer Merge
	Merging in Action

	Working with Excel Files
	Reading Excel Files
	Advanced Excel file handling
	Excel in Action

	Melting DataFrames
	Melting
	Wide Format
	Long Format
	How to melt DataFrames
	Melting in Action

	Programming with AI
	Using AI to generate code
	
	Large Language Models (LLMs)
	Training LLMs
	Pattern Recognition
	Probability based responses
	Limitations
	Impact on Jobs
	(Current) Choices for Programmers
	Getting started with AI in Zed
	Using Zed
	Asking for help
	More on Zed

	Literature
	Interesting Books

