
Lecture VII - NumPy for Scientific Computing

Programming with Python

Dr. Tobias Vl�ć ek
Kühne Logisti�s University Hamburg - Fall 2025

Quick Recap of the last Lecture

Modules
• Modules are .py files �ontaining Python �ode
• They are used to organize and reuse �ode
• They �an define fun�tions, �lasses, and variables
• Can be imported into other s�ripts

. . .

 Tip

We �an import entire modules or individual fun�tions, �lasses or variables.

Standard Libraries
• Python in�ludes many built-in modules like:
‣ random provides fun�tions for random numbers
‣ os allows intera�tion with the operating system
‣ csv is used for reading and writing CSV files
‣ re is used for working with regular expressions

Packages
• Pa�kages are �olle�tions of modules
• Often available from the Python Pa�kage Index (PyPI)
• Install using uv add <package_name>
• Virtual environments help manage dependen�ies

. . .

 Tip

Virtual environments are not that important for you right now, as they are mostly
used if you work on several proje�ts with different depende�ies at on�e.

1

NumPy Module

What is NumPy?
• NumPy is a pa�kage for s�ientifi� �omputing in Python
• Provides large, multi-dimensional arrays and matri�es
• Wide range of fun�tions to operate on these
• Python lists �an be slow - Numpy arrays are mu�h faster

. . .

 Note

The name of the pa�kage �omes from Numeri�al Python.

Why is NumPy so fast?
• Arrays are stored in a �ontiguous blo�k of memory
• This allows for effi�ient memory a��ess patterns
• Operations are implemented in the languages C and C++

. . .

Question: Have you heard of C and C++?

How to get started
1. Install NumPy using uv add numpy
2. Import NumPy in a s�ript using import numpy as np

. . .

import numpy as np
x = np.array([1, 2, 3, 4, 5]); type(x)

numpy.ndarray

. . .

 Note

You don’t have to use as np. But it is a �ommon pra�ti�e to do so.

Creating Arrays
• The ba�kbone of Numpy is the so �alled ndarray
• Can be initialized from different data stru�tures:

import numpy as np

2

array_from_list = np.array([1, 1, 1, 1])
print(array_from_list)

[1 1 1 1]

import numpy as np

array_from_tuple = np.array((2, 2, 2, 2))
print(array_from_tuple)

[2 2 2 2]

Hetergenous Data Types
• It is possible to store different data types in a ndarray

import numpy as np

array_different_types = np.array(["s", 2, 2.0, "i"])
print(array_different_types)

['s' '2' '2.0' 'i']

. . .

 Note

But it is mostly not re�ommended, as it �an lead to performan�e issues. If possible,
try to keep the types homogenous.

Prefilled Arrays
Improve performan�e by allo�ating memory upfront

• np.zeros(shape): to �reate an array of zeros
• np.random.rand(shape): array of random values
• np.arange(start, stop, step): evenly spa�ed
• np.linspace(start, stop, num): evenly spa�ed

. . .

 Note

The shape refers to the size of the array. It �an have one or multiple dimensions.

3

Dimensions
• The shape is spe�ified as tuple in these arrays
• (2) or 2 �reates a 1-dimensional array (vetor)
• (2,2) �reates a 2-dimensional array (matrix)
• (2,2,2) 3-dimensional array (3rd order tensor)
• (2,2,2,2) 4-dimensional array (4th order tensor)
• …

Computations
• We �an apply operations to the entire array at on�e
• This is mu�h faster than applying them element-wise

. . .

import numpy as np
x = np.array([1, 2, 3, 4, 5])
x + 1

array([2, 3, 4, 5, 6])

Arrays in Action
Task: Pra�ti�e working with Numpy:

TODO: Create a 3-dimensional tensor with filled with zeros
Choose the shape of the tensor, but it should have 200 elements
Add the number 5 to all values of the tensor

Your code here
assert sum(tensor) == 1000

TODO: Print the shape of the tensor using the method shape()
TODO: Print the dtype of the tensor using the method dtype()
TODO: Print the size of the tensor using the method size()

Indexing and Slicing
• A��essing and sli�ing ndarray works as before
• Higher dimension element a��ess with multiple indi�es

. . .

Question: What do you expe�t will be printed?

import numpy as np
x = np.random.randint(0, 10, size=(3, 3))
print(x); print("---")
print(x[0:2,0:2])

4

[[6 3 2]
 [3 5 4]
 [9 5 4]]

[[6 3]
 [3 5]]

Data Types
• Numpy provides data types as �hara�ters
• i: integer
• b: boolean
• f: float
• S: string
• U: uni�ode

. . .

string_array = np.array(["Hello", "World"]); string_array.dtype

dtype('<U5')

Enforcing Data Types
• We �an also provide the type when �reating arrays

. . .

x = np.array([1, 2, 3, 4, 5], dtype = 'f'); print(x.dtype)

float32

. . .

• Or we �an �hange them for existing arrays

x = np.array([1, 2, 3, 4, 5], dtype = 'f'); print(x.astype('i').dtype)

int32

. . .

 Note

Note, how the types are spe�ified as int32 and float32.

5

Sidenote: Bits
Question: Do you have an idea what 32 stands for?

. . .

• It’s the number of bits used to represent a number
‣ int16 is a 16-bit integer
‣ float32 is a 32-bit floating point number
‣ int64 is a 64-bit integer
‣ float128 is a 128-bit floating point number

Why do Bits Matter?
• They matter, be�ause they �an affe�t:
‣ the performan�e of your �ode
‣ the pre�ision of your results

. . .

• That’s why numbers �an have a limited pre�ision!
‣ An int8 has to be in the range of −128 to 127
‣ An int16 has to be in the range of −32768 to 32767

. . .

Question: Size differen�e between int16 and int64?

Joining Arrays
• You �an use concatenate two join arrays
• With axis you �an spe�ify the dimension
• In 2-dimensions hstack() and vstack() are easier

. . .

Question: What do you expe�t will be printed?

import numpy as np
ones = np.array((1,1,1,1))
twos = np.array((1,1,1,1)) *2
print(np.vstack((ones,twos))); print(np.hstack((ones,twos)))

[[1 1 1 1]
 [2 2 2 2]]
[1 1 1 1 2 2 2 2]

Common Methods
• sort(): sort the array from low to high
• reshape(): reshape the array into a new shape
• flatten(): flatten the array into a 1D array
• squeeze(): squeeze the array to remove 1D entries
• transpose(): transpose the array

6

. . .

 Tip

Try experiment with these methods, they �an make your work mu�h easier.

Speed Differences in Action
Task: Complete the following task to pra�ti�e with Numpy:

TODO: Create a 2-dimensional matrix with filled with ones of size 1000 x
1000.
Afterward, flatten the matrix to a vector and loop over the vector.
In each loop iteration, add a random number between 1 and 10000.
TODO: Now, do the same with a list of the same size and fill it with
random numbers.
Then, sort the list as you have done with the Numpy vector before.
You can use the `time` module to compare the runtime of both approaches.
import time
start = time.time()
Your code here
end = time.time()
print(end - start) # time in seconds

6.198883056640625e-06

That’s it for today!

 Note

And that’s it for todays le�ture!
You now have the basi� knowledge to start working with s�ientifi� �omputing.

Literature

Interesting Books
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.

7

https://greenteapress.com/wp/think-python-3rd-edition/
../general/literature.qmd
../general/literature.qmd

	Quick Recap of the last Lecture
	Modules
	Standard Libraries
	Packages

	NumPy Module
	What is NumPy?
	Why is NumPy so fast?
	How to get started
	Creating Arrays
	Hetergenous Data Types
	Prefilled Arrays
	Dimensions
	Computations
	Arrays in Action
	Indexing and Slicing
	Data Types
	Enforcing Data Types
	Sidenote: Bits
	Why do Bits Matter?
	Joining Arrays
	Common Methods
	Speed Differences in Action

	That's it for today!
	Literature
	Interesting Books

