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Quick Recap of the last Lecture

Modules
• Modules are .py files �ontaining Python �ode
• They are used to organize and reuse �ode
• They �an define fun�tions, �lasses, and variables
• Can be imported into other s�ripts

. . .

 Tip

We �an import entire modules or individual fun�tions, �lasses or variables.

Standard Libraries
• Python in�ludes many built-in modules like:
‣ random provides fun�tions for random numbers
‣ os allows intera�tion with the operating system
‣ csv is used for reading and writing CSV files
‣ re is used for working with regular expressions

Packages
• Pa�kages are �olle�tions of modules
• Often available from the Python Pa�kage Index (PyPI)
• Install using uv add <package_name>
• Virtual environments help manage dependen�ies

. . .

 Tip

Virtual environments are not that important for you right now, as they are mostly
used if you work on several proje�ts with different depende�ies at on�e.
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NumPy Module

What is NumPy?
• NumPy is a pa�kage for s�ientifi� �omputing in Python
• Provides large, multi-dimensional arrays and matri�es
• Wide range of fun�tions to operate on these
• Python lists �an be slow - Numpy arrays are mu�h faster

. . .

 Note

The name of the pa�kage �omes from Numeri�al Python.

Why is NumPy so fast?
• Arrays are stored in a �ontiguous blo�k of memory
• This allows for effi�ient memory a��ess patterns
• Operations are implemented in the languages C and C++

. . .

Question: Have you heard of C and C++?

How to get started
1. Install NumPy using uv add numpy
2. Import NumPy in a s�ript using import numpy as np

. . .

import numpy as np
x = np.array([1, 2, 3, 4, 5]); type(x)

numpy.ndarray

. . .

 Note

You don’t have to use as np. But it is a �ommon pra�ti�e to do so.

Creating Arrays
• The ba�kbone of Numpy is the so �alled ndarray
• Can be initialized from different data stru�tures:

import numpy as np
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array_from_list = np.array([1, 1, 1, 1])
print(array_from_list)

[1 1 1 1]

import numpy as np

array_from_tuple = np.array((2, 2, 2, 2))
print(array_from_tuple)

[2 2 2 2]

Hetergenous Data Types
• It is possible to store different data types in a ndarray

import numpy as np

array_different_types = np.array(["s", 2, 2.0, "i"])
print(array_different_types)

['s' '2' '2.0' 'i']

. . .

 Note

But it is mostly not re�ommended, as it �an lead to performan�e issues. If possible,
try to keep the types homogenous.

Prefilled Arrays
Improve performan�e by allo�ating memory upfront

• np.zeros(shape): to �reate an array of zeros
• np.random.rand(shape): array of random values
• np.arange(start, stop, step): evenly spa�ed
• np.linspace(start, stop, num): evenly spa�ed

. . .

 Note

The shape refers to the size of the array. It �an have one or multiple dimensions.
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Dimensions
• The shape is spe�ified as tuple in these arrays
• (2) or 2 �reates a 1-dimensional array (vetor)
• (2,2) �reates a 2-dimensional array (matrix)
• (2,2,2) 3-dimensional array (3rd order tensor)
• (2,2,2,2) 4-dimensional array (4th order tensor)
• …

Computations
• We �an apply operations to the entire array at on�e
• This is mu�h faster than applying them element-wise

. . .

import numpy as np
x = np.array([1, 2, 3, 4, 5])
x + 1

array([2, 3, 4, 5, 6])

Arrays in Action
Task: Pra�ti�e working with Numpy:

# TODO: Create a 3-dimensional tensor with filled with zeros
# Choose the shape of the tensor, but it should have 200 elements
# Add the number 5 to all values of the tensor

# Your code here
assert sum(tensor) == 1000

# TODO: Print the shape of the tensor using the method shape()
# TODO: Print the dtype of the tensor using the method dtype()
# TODO: Print the size of the tensor using the method size()

Indexing and Slicing
• A��essing and sli�ing ndarray works as before
• Higher dimension element a��ess with multiple indi�es

. . .

Question: What do you expe�t will be printed?

import numpy as np
x = np.random.randint(0, 10, size=(3, 3))
print(x); print("---")
print(x[0:2,0:2])
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[[6 3 2]
 [3 5 4]
 [9 5 4]]
---
[[6 3]
 [3 5]]

Data Types
• Numpy provides data types as �hara�ters
• i: integer
• b: boolean
• f: float
• S: string
• U: uni�ode

. . .

string_array = np.array(["Hello", "World"]); string_array.dtype

dtype('<U5')

Enforcing Data Types
• We �an also provide the type when �reating arrays

. . .

x = np.array([1, 2, 3, 4, 5],  dtype = 'f'); print(x.dtype)

float32

. . .

• Or we �an �hange them for existing arrays

x = np.array([1, 2, 3, 4, 5],  dtype = 'f'); print(x.astype('i').dtype)

int32

. . .

 Note

Note, how the types are spe�ified as int32 and float32.
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Sidenote: Bits
Question: Do you have an idea what 32 stands for?

. . .

• It’s the number of bits used to represent a number
‣ int16 is a 16-bit integer
‣ float32 is a 32-bit floating point number
‣ int64 is a 64-bit integer
‣ float128 is a 128-bit floating point number

Why do Bits Matter?
• They matter, be�ause they �an affe�t:
‣ the performan�e of your �ode
‣ the pre�ision of your results

. . .

• That’s why numbers �an have a limited pre�ision!
‣ An int8 has to be in the range of −128 to 127
‣ An int16 has to be in the range of −32768 to 32767

. . .

Question: Size differen�e between int16 and int64?

Joining Arrays
• You �an use concatenate two join arrays
• With axis you �an spe�ify the dimension
• In 2-dimensions hstack() and vstack() are easier

. . .

Question: What do you expe�t will be printed?

import numpy as np
ones = np.array((1,1,1,1))
twos = np.array((1,1,1,1)) *2
print(np.vstack((ones,twos))); print(np.hstack((ones,twos)))

[[1 1 1 1]
 [2 2 2 2]]
[1 1 1 1 2 2 2 2]

Common Methods
• sort(): sort the array from low to high
• reshape(): reshape the array into a new shape
• flatten(): flatten the array into a 1D array
• squeeze(): squeeze the array to remove 1D entries
• transpose(): transpose the array
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. . .

 Tip

Try experiment with these methods, they �an make your work mu�h easier.

Speed Differences in Action
Task: Complete the following task to pra�ti�e with Numpy:

# TODO: Create a 2-dimensional matrix with filled with ones of size 1000 x
1000.
# Afterward, flatten the matrix to a vector and loop over the vector.
# In each loop iteration, add a random number between 1 and 10000.
# TODO: Now, do the same with a list of the same size and fill it with
random numbers.
# Then, sort the list as you have done with the Numpy vector before.
# You can use the `time` module to compare the runtime of both approaches.
import time
start = time.time()
# Your code here
end = time.time()
print(end - start) # time in seconds

6.198883056640625e-06

That’s it for today!

 Note

And that’s it for todays le�ture!
You now have the basi� knowledge to start working with s�ientifi� �omputing.

Literature

Interesting Books
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.
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