
Lecture VI - Using Modules and Packages

Programming with Python

Dr. Tobias Vl�ć ek
Kühne Logisti�s University Hamburg - Fall 2025

Quick Recap of the last Lecture

Exceptions and Error Handling
• Ex�eptions are dis�overed errors during program exe�ution
• Common built-in ex�eptions: ValueError, TypeError, et�.

. . .

x = int("Hello, World!")

. . .

>ValueError: invalid literal for int() with base 10: ‘Hello, World!’

Try-Except Blocks
• try-except blo�ks are used to handle ex�eptions
• try blo�k �ontains �ode that might raise an ex�eption
• except blo�k �ontains �ode exe�uted if an ex�eption o��urs

. . .

try:
 # Code that might raise an exception
 # ...
except ExceptionType as e:
 # Code to handle the exception
 # ...
except Exception as e:
 # Code to handle any other exceptions
 # ...

Raising Exceptions
• We �an raise ex�eptions using the raise statement
• Allows for more �ontrolled error handling
• Can in�lude �ustom error messages

. . .

raise ValueError("This is a custom error message")

1

. . .

 Note

The type if raised ex�eption has to exist or you have to �reate a �ustom error type
before.

Assertions
• Assertions �he�k if a �ondition is true
• If the �ondition is false, an AssertionError is raised
• Useful for �he�king �al�ulations or variable types

. . .

x = -1
assert x > 0, "x must be positive"

. . .

Question: Will this raise an AssertionError?

Debugging
• Debugging is the pro�ess of finding and fixing errors in �ode
• Using print and assert statements
• Using logging
• Using built-in debugging tools in IDEs

. . .

 Tip

That’s why IDEs are so helpful in �oding.

Modules

Why Modules?
• Modular programming breaks large tasks into smaller subtasks
• Modules are like building blo�ks for larger appli�ations
• Individual modules �an be �ombined to �reate a �omplete program
• This approa�h enhan�es �ode organization and reusability

Creating Modules
• Modules are simply .py files �ontaining Python �ode
• They �an define fun�tions, �lasses, and variables
• They �an be imported into other Python s�ripts

2

The script new_module.py is in the same directory as this script
import lec_06_new_module as new_module # Here we import the module
new_module.my_function() # Here we call the function from the module

Hello from my_function!

Importing functions from modules
• We �an also import spe�ifi� fun�tions from a module
• This is useful if we only need a few fun�tions from a module
• Analogously, we �an import �lasses or variables from a module

. . .

Multiple imports from a module are possible as well!
from lec_06_new_module import another_function, yet_another_function
another_function()
yet_another_function()

Hello from another_function!
Hello from yet_another_function!

. . .

 Tip

This is a good way to avoid importing too mu�h from a module. In addition, we don’t
need to use the module name before the fun�tion name when we use the fun�tions
from the module.

Built-in Modules
Python �omes with many built-in modules. Common ones in�lude:

Module Des�ription

math Different mathemati�al fun�tions

random Random number generation

datetime Date and time manipulation

os Operating system intera�tion

csv Reading and writing CSV files

re Regular expression operations

Importing from the Standard Library
Task: Use Python’s math module to �al�ulate the area of a �ir�le.

3

Import the `math` module.
Define a function named `calculate_area` that takes the radius `r` as an
argument.
Inside the function, use the `math.pi` constant to get the value of π.
Calculate the area in the function and return it.

Your code here

assert calculate_area(5) == 78.53981633974483

. . .

 Tip

Note, how assertations �an be used to �he�k if a fun�tion works �orre�tly.

Standard Libraries

Random Numbers
The random module provides fun�tions for random numbers

• random.random(): random float between 0 and 1
• random.uniform(a, b): random float between a and b
• random.randint(a, b): random integer between a and b
• random.choice(list): random element from a list
• random.shuffle(list): shuffle a list

 Tip

There are many more fun�tions in the random module. Use the help() fun�tion to
get more information about a module or fun�tion.

Random Numbers in Action
Task: Time for a task! Import the random module and �reate a small number guessing
game with the following requirements:

Generate a random integer between 1 and 10 using randint().
Ask the user to guess the number with input().
Print whether the guess was correct.
Give a hint if the guess was too high or too low.
Repeat the game until the user guesses the number.

Your code here

. . .

4

 Tip

Remember, that the input fun�tion always returns a string!

OS Module
• The os module provides fun�tions to intera�t with the OS
• os.listdir(path): list all files and dire�tories in a dire�tory
• os.path.isfile(path): �he�k if a path is a file
• os.path.exists(path): �he�k if a path exists
• os.makedirs(path): �reate a dire�tory

. . .

 Tip

These �an be quite useful for file handling. The os module �ontains many more
fun�tions, e.g. for �hanging the �urrent working dire�tory, for renaming and moving
files, et�.

CSV Module
• Comma-Separated Values files are used to store tabular data
• Write: csv.writer(file)
• Read: csv.reader(file)

. . .

import csv # Import the csv module

with open('secret_message.csv', 'w') as file: # Open the file in write mode
 writer = csv.writer(file) # Create a writer object
 writer.writerow(['Entry', 'Message']) # Write the header
 writer.writerow(['1', 'Do not open the file']) # Write the first row
 writer.writerow(['2', 'This is a secret message']) # Write the second
row

. . .

Task: Copy the �ode and run it. Do you have a new file?

OS and CSV Module in Action
Task: Time for another task! Do the following:

First, check if a directory called `module_directory` exists.
If it does not, create it.
Then, list all files in the current directory and save them in a CSV file
called `current_files.csv` in the new `module_directory`.

5

import os
if not os.path.exists('module_directory'):
 pass
Your code here

Regular Expressions

What are Regular Expressions?
• Regular expressions are a way to sear�h for patterns in text
• They are a useful tool for string manipulation
• We �an use the re module to work with regular expressions

. . .

import re
pattern = r'World' # This is the pattern we are searching for
string = 'Hello, World!' # This is the string we are searching in
print(re.search(pattern, string)) # This will search for the pattern in the
string

<re.Match object; span=(7, 12), match='World'>

. . .

 Note

So far, we �ould also have a�hieved this with the find method of a string.

Why Regular Expressions?

import re
pattern = 'World' # This is the pattern we are searching for
string = 'Hello, World!' # This is the string we are searching in
print(string.find(pattern)) # No regular expressions here!

7

. . .

• But regular expressions are more powerful and flexible
• They have spe�ial �hara�ters that allow for �omplex patterns
• They are widely used in text pro�essing and web s�raping

Using Regular Expressions
• re.search(pat, str): sear�h for a pattern in a string
• re.findall(pat, str): find all o��urren�es of a pattern
• re.fullmatch(pat, str): �he�k if entire string mat�hes pattern

6

• re.sub(pat, repl, str): repla�e a pattern in a string
• re.split(pat, str): split a string by a pattern

. . .

 Note

As always, there is more. But these are a good foundation to build upon.

Regular Expression in Action
Task: Repla�e all o��uren�es of Python by “SECRET”.

import re
string = """
Python is a programming language.
Python is also a snake.
Monty Python was a theater group.
"""
Your code here

. . .

 Note

Regular expressions are even more powerful when �ombined with spe�ial �hara�-
ters.

Special Characters I
• . mat�hes any �hara�ter
• * mat�hes zero or more of the pre�eding element
• + mat�hes one or more of the pre�eding element
• ? mat�hes zero or one of the pre�eding element
• [] mat�hes any �hara�ter in the bra�kets
• | mat�hes either the left or the right side
• \d mat�hes any digit
• \w mat�hes any word �hara�ter (alphanumeri� and unders�ore)
• \s mat�hes any whitespa�e �hara�ter

Special Characters II
• There are many more spe�ial �hara�ters in regular expressions
• In order to keep things simple, we will not �over them here

. . .

import re
print(re.findall(r'\d{3}-\d{2}-\d{4}', 'Here is a phone number:
123-45-6789.'))

7

['123-45-6789']

. . .

 Tip

It �an be quite �ompli�ated to get the hang of these spe�ial �hara�ters, espe�ially
at the beginning. Gladly, there are tools like regexr.�om that �an help with building
the right pattern. Apart from that, help(re) in the terminal �an also be very helpful.

Advanced Regular Expressions in Action
Task: Use regular expressions to extra�t all dates from the text.

dates = """
On 07-04-1776, the United States declared its independence. Many years
later,
on 11-09-1989, the Berlin Wall fell. In more recent history, the COVID-19
pandemic was declared a global emergency on 04-11-2020.
"""
Try to find all dates in the above text with findall()
Your code here

Packages

What are Packages?
• Pa�kages are esentially �olle�tions of modules
• They �an �ontain multiple modules, subpa�kages, and data files
• Many pa�kages are available in the Python Pa�kage Index (PyPI)
• You don’t have to invent the wheel yourself
• A lot of fun�tionality is already implemented by others!

Installing Packages
• Pa�kages are installed in the shell
• Use uv add <package_name> to install a spe�ifi� pa�kage
• Afterward you �an import from the pa�kage in your Python s�ripts

. . .

Packages in Action
Task: Install the pandas and numpy pa�kages, whi�h are �ommonly used for data analysis.
We will use them together next week!

. . .

{bash}
uv add pandas numpy

8

https://regexr.com

. . .

 Tip

If you install pa�kages like this, you �an use the shell to do so! Alternatively, you
�an use uv add <package_name> in the Python terminal.

Virtual Environments
• Virtual environments are used to manage dependen�ies
• They allow you to have different environments for proje�ts
• They �an be �reated using the venv module
• This be�omes important if you work on several proje�ts at on�e

. . .

 Note

And that’s it for todays le�ture!
We now have �ompleted the first step into data s�ien�e in Python. Next week, we
�an use this new knowledge to start to work with some tabular data and matri�es.

Literature

Interesting Books
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.

. . .

 Tip

Nothing new here, but these are still great books!

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.

9

https://greenteapress.com/wp/think-python-3rd-edition/
../general/literature.qmd
../general/literature.qmd

	Quick Recap of the last Lecture
	Exceptions and Error Handling
	Try-Except Blocks
	Raising Exceptions
	Assertions
	Debugging

	Modules
	Why Modules?
	Creating Modules
	Importing functions from modules
	Built-in Modules
	Importing from the Standard Library

	Standard Libraries
	Random Numbers
	Random Numbers in Action
	OS Module
	CSV Module
	OS and CSV Module in Action

	Regular Expressions
	What are Regular Expressions?
	Why Regular Expressions?
	Using Regular Expressions
	Regular Expression in Action
	Special Characters I
	Special Characters II
	Advanced Regular Expressions in Action

	Packages
	What are Packages?
	Installing Packages
	Packages in Action
	Virtual Environments

	Literature
	Interesting Books

