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Quick Recap of the last Lecture

Exceptions and Error Handling
• Ex�eptions are dis�overed errors during program exe�ution
• Common built-in ex�eptions: ValueError, TypeError, et�.

. . .

x = int("Hello, World!")

. . .

>ValueError: invalid literal for int() with base 10: ‘Hello, World!’

Try-Except Blocks
• try-except blo�ks are used to handle ex�eptions
• try blo�k �ontains �ode that might raise an ex�eption
• except blo�k �ontains �ode exe�uted if an ex�eption o��urs

. . .

try:
    # Code that might raise an exception
    # ...
except ExceptionType as e:
    # Code to handle the exception
    # ...
except Exception as e:
    # Code to handle any other exceptions
    # ...

Raising Exceptions
• We �an raise ex�eptions using the raise statement
• Allows for more �ontrolled error handling
• Can in�lude �ustom error messages

. . .

raise ValueError("This is a custom error message")
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. . .

 Note

The type if raised ex�eption has to exist or you have to �reate a �ustom error type
before.

Assertions
• Assertions �he�k if a �ondition is true
• If the �ondition is false, an AssertionError is raised
• Useful for �he�king �al�ulations or variable types

. . .

x = -1
assert x > 0, "x must be positive"

. . .

Question: Will this raise an AssertionError?

Debugging
• Debugging is the pro�ess of finding and fixing errors in �ode
• Using print and assert statements
• Using logging
• Using built-in debugging tools in IDEs

. . .

 Tip

That’s why IDEs are so helpful in �oding.

Modules

Why Modules?
• Modular programming breaks large tasks into smaller subtasks
• Modules are like building blo�ks for larger appli�ations
• Individual modules �an be �ombined to �reate a �omplete program
• This approa�h enhan�es �ode organization and reusability

Creating Modules
• Modules are simply .py files �ontaining Python �ode
• They �an define fun�tions, �lasses, and variables
• They �an be imported into other Python s�ripts
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# The script new_module.py is in the same directory as this script
import lec_06_new_module as new_module # Here we import the module
new_module.my_function() # Here we call the function from the module

Hello from my_function!

Importing functions from modules
• We �an also import spe�ifi� fun�tions from a module
• This is useful if we only need a few fun�tions from a module
• Analogously, we �an import �lasses or variables from a module

. . .

# Multiple imports from a module are possible as well!
from lec_06_new_module import another_function, yet_another_function
another_function()
yet_another_function()

Hello from another_function!
Hello from yet_another_function!

. . .

 Tip

This is a good way to avoid importing too mu�h from a module. In addition, we don’t
need to use the module name before the fun�tion name when we use the fun�tions
from the module.

Built-in Modules
Python �omes with many built-in modules. Common ones in�lude:

Module Des�ription

math Different mathemati�al fun�tions

random Random number generation

datetime Date and time manipulation

os Operating system intera�tion

csv Reading and writing CSV files

re Regular expression operations

Importing from the Standard Library
Task: Use Python’s math module to �al�ulate the area of a �ir�le.
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# Import the `math` module.
# Define a function named `calculate_area` that takes the radius `r` as an
argument.
# Inside the function, use the `math.pi` constant to get the value of π.
# Calculate the area in the function and return it.

# Your code here

assert calculate_area(5) == 78.53981633974483

. . .

 Tip

Note, how assertations �an be used to �he�k if a fun�tion works �orre�tly.

Standard Libraries

Random Numbers
The random module provides fun�tions for random numbers

• random.random(): random float between 0 and 1
• random.uniform(a, b): random float between a and b
• random.randint(a, b): random integer between a and b
• random.choice(list): random element from a list
• random.shuffle(list): shuffle a list

 Tip

There are many more fun�tions in the random module. Use the help() fun�tion to
get more information about a module or fun�tion.

Random Numbers in Action
Task: Time for a task! Import the random module and �reate a small number guessing
game with the following requirements:

# Generate a random integer between 1 and 10 using randint().
# Ask the user to guess the number with input().
# Print whether the guess was correct.
# Give a hint if the guess was too high or too low.
# Repeat the game until the user guesses the number.

# Your code here

. . .
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 Tip

Remember, that the input fun�tion always returns a string!

OS Module
• The os module provides fun�tions to intera�t with the OS
• os.listdir(path): list all files and dire�tories in a dire�tory
• os.path.isfile(path): �he�k if a path is a file
• os.path.exists(path): �he�k if a path exists
• os.makedirs(path): �reate a dire�tory

. . .

 Tip

These �an be quite useful for file handling. The os module �ontains many more
fun�tions, e.g. for �hanging the �urrent working dire�tory, for renaming and moving
files, et�.

CSV Module
• Comma-Separated Values files are used to store tabular data
• Write: csv.writer(file)
• Read: csv.reader(file)

. . .

import csv # Import the csv module

with open('secret_message.csv', 'w') as file: # Open the file in write mode
    writer = csv.writer(file) # Create a writer object
    writer.writerow(['Entry', 'Message']) # Write the header
    writer.writerow(['1', 'Do not open the file']) # Write the first row
    writer.writerow(['2', 'This is a secret message']) # Write the second
row

. . .

Task: Copy the �ode and run it. Do you have a new file?

OS and CSV Module in Action
Task: Time for another task! Do the following:

# First, check if a directory called `module_directory` exists.
# If it does not, create it.
# Then, list all files in the current directory and save them in a CSV file
called `current_files.csv` in the new `module_directory`.
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import os
if not os.path.exists('module_directory'):
    pass
# Your code here

Regular Expressions

What are Regular Expressions?
• Regular expressions are a way to sear�h for patterns in text
• They are a useful tool for string manipulation
• We �an use the re module to work with regular expressions

. . .

import re
pattern = r'World' # This is the pattern we are searching for
string = 'Hello, World!' # This is the string we are searching in
print(re.search(pattern, string)) # This will search for the pattern in the
string

<re.Match object; span=(7, 12), match='World'>

. . .

 Note

So far, we �ould also have a�hieved this with the find method of a string.

Why Regular Expressions?

import re
pattern = 'World' # This is the pattern we are searching for
string = 'Hello, World!' # This is the string we are searching in
print(string.find(pattern)) # No regular expressions here!
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. . .

• But regular expressions are more powerful and flexible
• They have spe�ial �hara�ters that allow for �omplex patterns
• They are widely used in text pro�essing and web s�raping

Using Regular Expressions
• re.search(pat, str): sear�h for a pattern in a string
• re.findall(pat, str): find all o��urren�es of a pattern
• re.fullmatch(pat, str): �he�k if entire string mat�hes pattern
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• re.sub(pat, repl, str): repla�e a pattern in a string
• re.split(pat, str): split a string by a pattern

. . .

 Note

As always, there is more. But these are a good foundation to build upon.

Regular Expression in Action
Task: Repla�e all o��uren�es of Python by “SECRET”.

import re
string = """
Python is a programming language.
Python is also a snake.
Monty Python was a theater group.
"""
# Your code here

. . .

 Note

Regular expressions are even more powerful when �ombined with spe�ial �hara�-
ters.

Special Characters I
• . mat�hes any �hara�ter
• * mat�hes zero or more of the pre�eding element
• + mat�hes one or more of the pre�eding element
• ? mat�hes zero or one of the pre�eding element
• [] mat�hes any �hara�ter in the bra�kets
• | mat�hes either the left or the right side
• \d mat�hes any digit
• \w mat�hes any word �hara�ter (alphanumeri� and unders�ore)
• \s mat�hes any whitespa�e �hara�ter

Special Characters II
• There are many more spe�ial �hara�ters in regular expressions
• In order to keep things simple, we will not �over them here

. . .

import re
print(re.findall(r'\d{3}-\d{2}-\d{4}', 'Here is a phone number:
123-45-6789.'))
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['123-45-6789']

. . .

 Tip

It �an be quite �ompli�ated to get the hang of these spe�ial �hara�ters, espe�ially
at the beginning. Gladly, there are tools like regexr.�om that �an help with building
the right pattern. Apart from that, help(re) in the terminal �an also be very helpful.

Advanced Regular Expressions in Action
Task: Use regular expressions to extra�t all dates from the text.

dates = """
On 07-04-1776, the United States declared its independence. Many years
later,
on 11-09-1989, the Berlin Wall fell. In more recent history, the COVID-19
pandemic was declared a global emergency on 04-11-2020.
"""
# Try to find all dates in the above text with findall()
# Your code here

Packages

What are Packages?
• Pa�kages are esentially �olle�tions of modules
• They �an �ontain multiple modules, subpa�kages, and data files
• Many pa�kages are available in the Python Pa�kage Index (PyPI)
• You don’t have to invent the wheel yourself
• A lot of fun�tionality is already implemented by others!

Installing Packages
• Pa�kages are installed in the shell
• Use uv add <package_name> to install a spe�ifi� pa�kage
• Afterward you �an import from the pa�kage in your Python s�ripts

. . .

Packages in Action
Task: Install the pandas and numpy pa�kages, whi�h are �ommonly used for data analysis.
We will use them together next week!

. . .

{bash}
uv add pandas numpy
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. . .

 Tip

If you install pa�kages like this, you �an use the shell to do so! Alternatively, you
�an use uv add <package_name> in the Python terminal.

Virtual Environments
• Virtual environments are used to manage dependen�ies
• They allow you to have different environments for proje�ts
• They �an be �reated using the venv module
• This be�omes important if you work on several proje�ts at on�e

. . .

 Note

And that’s it for todays le�ture!
We now have �ompleted the first step into data s�ien�e in Python. Next week, we
�an use this new knowledge to start to work with some tabular data and matri�es.

Literature

Interesting Books
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.

. . .

 Tip

Nothing new here, but these are still great books!

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.
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