
Lecture V - Handling Errors

Programming with Python

Dr. Tobias Vl�ć ek
Kühne Logisti�s University Hamburg - Fall 2025

Quick Recap of the last Lecture

Data Structures
• Newly introdu�ed data stru�tures:
‣ Tuples: Ordered, immutable �olle�tions
‣ Lists: Ordered, mutable �olle�tions
‣ Sets: Unordered �olle�tions of unique elements
‣ Di�tionaries: Key-value pairs

. . .

list_example = [1, 2, 3, 4, 5]
set_example = {1, 2, 3, 4, 5}
dict_example = {"a": 1, "b": 2, "c": 3}
tuple_example = (1, 2, 3, 4, 5)

Operations and Methods
• Ea�h data stru�ture has spe�ifi� operations and methods:
‣ Tuples and Lists: Indexing, sli�ing, �on�atenation
‣ Sets: Union, interse�tion, differen�e
‣ Di�tionaries: Key-based a��ess, keys(), values()

. . .

 Tip

Comprehensions for �on�ise �reation of these stru�tures are often used in pra�ti�e
to �reate new data stru�tures from existing ones.

I/O and File Handling
• Basi� file operations
‣ Opening files with open()
‣ Reading and writing files
‣ Using the with statement for safer file handling

. . .

1

 Note

This �overs the main points from our last le�ture on data stru�tures and file handling
in Python.

Exceptions

What are Exceptions?
• Ex�eptions are dis�overed errors that o��ur during the exe�ution

. . .

def divide_numbers(a, b):
 result = a / b
 return result

print(divide_numbers(10, 0))
print("I will not be printed as the program crashed before.")

. . .

ZeroDivisionError: division by zero

. . .

 Warning

Undis�overed errors �an be very hard to debug and �an �ause �rashes and other
issues.

Common Built-in Exceptions I
• ValueError: argument of �orre�t type but inappropriate value
• TypeError: fun�tion applied to obje�t of inappropriate type
• NameError: raised when a lo�al or global name is not found
• IndexError: raised when a sequen�e subs�ript is out of range
• KeyError: raised when a di�tionary key is not found
• FileNotFoundError: file or dire�tory not found
• ZeroDivisionError: division or modulo by zero

Common Built-in Exceptions II
• AttributeError: attribute referen�e or assignment fails
• ImportError: import of a modulefails
• SyntaxError: parser en�ounters a syntax error
• IndentationError: indentation is not �orre�t
• RuntimeError: error does not fall into any �ategory

. . .

2

 Note

The list of built-in ex�eptions is even longer, these are just the most �ommon ones.
We won’t �over the errors listed here in detail, but it is good to be aware of them.

try-except Blocks
• try-except blo�ks are used to handle ex�eptions
• try blo�k �ontains the �ode that might raise an ex�eption
• except blo�k �ontains the exe�uted �ode if an ex�eption o��urs

. . .

def divide_numbers(a, b):
 try:
 result = a / b
 return result
 except ZeroDivisionError:
 return "Error: Division by zero is not allowed."

print(divide_numbers(10, 0))
print("I will be printed as the exception was handled!")

Error: Division by zero is not allowed.
I will be printed as the exception was handled!

try-except Blocks for specific exceptions
• We �an also spe�ify the type of ex�eption we want to �at�h
• This allows for more spe�ifi� error handling

try:
 # Code that might raise an exception
 # ...
except ExceptionType as e:
 # Code to handle the specific exception type
 # ...
except Exception as e:
 # Code to handle any other exceptions
 # ...

. . .

 Note

as e is used to store the ex�eption in a variable. Not mandatory, but good pra�ti�e
to do so.

3

try-except Blocks in Action
>Grouptask: Solve the following problem using try-ex�ept blo�ks:

. . .

Implement a function that converts a string to an integer
1. Try to convert the input_string to an integer
2. If successful, return the integer
3. If a ValueError occurs, catch it and return "Invalid input: not a
number"
4. If any other exception occurs, catch it and return
"An unexpected error occurred: [type of exception]"

Your code here

Test cases
print(string_to_int("42")) # Should print: 42
print(string_to_int("Hello")) # Should print: Invalid
print(string_to_int([123]))

. . .

Question: What is the output of the last line?

Raising Exceptions

Raising Exceptions
• We �an raise ex�eptions ourselves using the raise statement
• It allows us to handle errors in a more �ontrolled manner

. . .

def validate_age(age):
 if age < 0:
 raise ValueError
 return age

print(validate_age(25)) # This will print 25
print(validate_age(-1)) # This will raise a ValueError

>Task: Try to raise an ex�eption in the fun�tion above by passing a string to the
validate_age fun�tion. What happens?

Raising Exceptions with Custom Messages
• We �an also raise ex�eptions with �ustom messages
• This helps to provide more information about the error

. . .

def validate_age(age):
 if age < 0:

4

 raise ValueError("Age cannot be negative")
 return age

print(validate_age(25)) # This will print 25
print(validate_age(-1)) # This will raise a ValueError

. . .

>Question: What do you think the raise statement will show now?

Creating Custom Exceptions
• We do so by inheriting from the built-in Ex�eption �lass
• This allows us to �reate more spe�ifi� ex�eptions for our own �ode

class InvalidUsernameError(Exception):
 pass
def get_valid_username():
 while True:
 try:
 username = input("Please enter a username (no spaces): ")
 if " " in username:
 raise InvalidUsernameError("Username must not contain
spaces.")
 return username
 except InvalidUsernameError as e:
 print(f"Invalid username: {e}")
 print("Please try again.")

Assertions

What are Assertions?
• Assertions are statements that �he�k if a �ondition is true
• If the �ondition is false, an AssertionError is raised
• We �ould use them to �he�k the results of a �al�ulation

. . .

x = 9
y = 10
assert x < y, "x is not smaller than y"
assert isinstance(y, float), "y is not a float"

. . .

>Task: Try to run the �ode above and dis�uss what happens.

. . .

5

 Note

isinstance is a built-in fun�tion that �he�ks if an obje�t is an instan�e of a �lass.

Assertions in Action
>Grouptask: Solve the following problem using assertions:

Implement a function that takes a list of integers and returns the sum of
the numbers.
1. Use assertions to check if the input is a list
2. Use assertions to check if the list contains only integers.
3. If the list contains only integers, return the sum of the numbers

Your code here

Test cases
print(sum_of_numbers([1, 2, 3, 4, 5])) # Should print: 15
print(sum_of_numbers([1, 2.0, 3, 4, 5])) # Should print: AssertionError

Debugging

What is Debugging?
• Debugging is the pro�ess of finding and fixing errors in �ode
• We �an use print and assert statements to debug our �ode
• We �an also use debugging tools that are built into most IDEs

Using Print and Assert
• print: �he�k the values of variables at different points
• assert: �he�k �al�ulations or the types of variables

. . .

x = "Hello" # x is a string
print(x)
x = 42.0 # x is a float
print(x)
assert isinstance(x, float), "x is not a float"
assert x == 42.0, "x is not 42.0"

Hello
42.0

. . .

 Note

While this �an be useful, it is not always the best way to debug �ode.

6

Using Debugging Tools
• We �an also use debugging tools built into most IDEs
• Allow to step through �ode, set breakpoints, and inspe�t variables
• We will use Zed, but there are many other options

Debugging in Zed
>Task: Open Zed and �opy the following �ode to main.py.

def calculate_average(numbers):
 total = 0
 count = 0
 for num in numbers:
 total += num
 count += 1

 average = total / count
 return average

Test cases
test_lists = [
 [1, 2, 3, 4, 5],
 [10, 20, 30],
 []
]

for i, test_list in enumerate(test_lists):
 print(f"Test case {i + 1}:")
 result = calculate_average(test_list)
 print(f"Average: {result}\n")

Debugging Tools
>Task: Run the �ode and use the debugging tools by �li�king on the small bug i�on in
the lower right �orner to find the error and sele�t run [YOUR PATH TO THE FILE]/main.py.

• Use the breakpoints to pause the exe�ution at a spe�ifi� point
• Use step over, step into and step out to navigate through your �ode
• Use the variable viewer to inspe�t variables at different points

. . .

>Question: What do you think the error is?

. . .

 Note

The enumerate fun�tion used in the �ode is super helpful fun�tion that returns a
tuple �ontaining the index and the value of the item in the list and it is not the error.

7

Using Logging
• We �an also use logging to tra�k the exe�ution of a program
• It is a stru�tured way to log errors and other issues
• You �an spe�ify the level of severity for ea�h log message
• Hide messages of a �ertain severity if you want to during exe�ution

. . .

 Note

And that’s it for todays le�ture!
We now have �overed the basi�s of errors, ex�eptions and debugging in Python.
Logging is beyond our s�ope, but it is good to know should you work with larger
�odebases later on.

Literature

Interesting Books
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.

. . .

 Tip

Nothing new here, but these are still great books!

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.

8

https://greenteapress.com/wp/think-python-3rd-edition/
../general/literature.qmd
../general/literature.qmd

	Quick Recap of the last Lecture
	Data Structures
	Operations and Methods
	I/O and File Handling

	Exceptions
	What are Exceptions?
	Common Built-in Exceptions I
	Common Built-in Exceptions II
	try-except Blocks
	try-except Blocks for specific exceptions
	try-except Blocks in Action

	Raising Exceptions
	Raising Exceptions
	Raising Exceptions with Custom Messages
	Creating Custom Exceptions

	Assertions
	What are Assertions?
	Assertions in Action

	Debugging
	What is Debugging?
	Using Print and Assert
	Using Debugging Tools
	Debugging in Zed
	Debugging Tools
	Using Logging

	Literature
	Interesting Books

