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Quick Recap of the last Lecture

Data Structures
• Newly introdu�ed data stru�tures:
‣ Tuples: Ordered, immutable �olle�tions
‣ Lists: Ordered, mutable �olle�tions
‣ Sets: Unordered �olle�tions of unique elements
‣ Di�tionaries: Key-value pairs

. . .

list_example = [1, 2, 3, 4, 5]
set_example = {1, 2, 3, 4, 5}
dict_example = {"a": 1, "b": 2, "c": 3}
tuple_example = (1, 2, 3, 4, 5)

Operations and Methods
• Ea�h data stru�ture has spe�ifi� operations and methods:
‣ Tuples and Lists: Indexing, sli�ing, �on�atenation
‣ Sets: Union, interse�tion, differen�e
‣ Di�tionaries: Key-based a��ess, keys(), values()

. . .

 Tip

Comprehensions for �on�ise �reation of these stru�tures are often used in pra�ti�e
to �reate new data stru�tures from existing ones.

I/O and File Handling
• Basi� file operations
‣ Opening files with open()
‣ Reading and writing files
‣ Using the with statement for safer file handling

. . .
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 Note

This �overs the main points from our last le�ture on data stru�tures and file handling
in Python.

Exceptions

What are Exceptions?
• Ex�eptions are dis�overed errors that o��ur during the exe�ution

. . .

def divide_numbers(a, b):
        result = a / b
        return result

print(divide_numbers(10, 0))
print("I will not be printed as the program crashed before.")

. . .

ZeroDivisionError: division by zero

. . .

 Warning

Undis�overed errors �an be very hard to debug and �an �ause �rashes and other
issues.

Common Built-in Exceptions I
• ValueError: argument of �orre�t type but inappropriate value
• TypeError: fun�tion applied to obje�t of inappropriate type
• NameError: raised when a lo�al or global name is not found
• IndexError: raised when a sequen�e subs�ript is out of range
• KeyError: raised when a di�tionary key is not found
• FileNotFoundError: file or dire�tory not found
• ZeroDivisionError: division or modulo by zero

Common Built-in Exceptions II
• AttributeError: attribute referen�e or assignment fails
• ImportError: import of a modulefails
• SyntaxError: parser en�ounters a syntax error
• IndentationError: indentation is not �orre�t
• RuntimeError: error does not fall into any �ategory

. . .
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 Note

The list of built-in ex�eptions is even longer, these are just the most �ommon ones.
We won’t �over the errors listed here in detail, but it is good to be aware of them.

try-except Blocks
• try-except blo�ks are used to handle ex�eptions
• try blo�k �ontains the �ode that might raise an ex�eption
• except blo�k �ontains the exe�uted �ode if an ex�eption o��urs

. . .

def divide_numbers(a, b):
    try:
        result = a / b
        return result
    except ZeroDivisionError:
        return "Error: Division by zero is not allowed."

print(divide_numbers(10, 0))
print("I will be printed as the exception was handled!")

Error: Division by zero is not allowed.
I will be printed as the exception was handled!

try-except Blocks for specific exceptions
• We �an also spe�ify the type of ex�eption we want to �at�h
• This allows for more spe�ifi� error handling

try:
    # Code that might raise an exception
    # ...
except ExceptionType as e:
    # Code to handle the specific exception type
    # ...
except Exception as e:
    # Code to handle any other exceptions
    # ...

. . .

 Note

as e is used to store the ex�eption in a variable. Not mandatory, but good pra�ti�e
to do so.
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try-except Blocks in Action
>Grouptask: Solve the following problem using try-ex�ept blo�ks:

. . .

# Implement a function that converts a string to an integer
# 1. Try to convert the input_string to an integer
# 2. If successful, return the integer
# 3. If a ValueError occurs, catch it and return "Invalid input: not a
number"
# 4. If any other exception occurs, catch it and return
# "An unexpected error occurred: [type of exception]"

# Your code here

# Test cases
print(string_to_int("42"))        # Should print: 42
print(string_to_int("Hello"))     # Should print: Invalid
print(string_to_int([123]))

. . .

Question: What is the output of the last line?

Raising Exceptions

Raising Exceptions
• We �an raise ex�eptions ourselves using the raise statement
• It allows us to handle errors in a more �ontrolled manner

. . .

def validate_age(age):
    if age < 0:
        raise ValueError
    return age

print(validate_age(25)) # This will print 25
print(validate_age(-1)) # This will raise a ValueError

>Task: Try to raise an ex�eption in the fun�tion above by passing a string to the
validate_age fun�tion. What happens?

Raising Exceptions with Custom Messages
• We �an also raise ex�eptions with �ustom messages
• This helps to provide more information about the error

. . .

def validate_age(age):
    if age < 0:
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        raise ValueError("Age cannot be negative")
    return age

print(validate_age(25)) # This will print 25
print(validate_age(-1)) # This will raise a ValueError

. . .

>Question: What do you think the raise statement will show now?

Creating Custom Exceptions
• We do so by inheriting from the built-in Ex�eption �lass
• This allows us to �reate more spe�ifi� ex�eptions for our own �ode

class InvalidUsernameError(Exception):
    pass
def get_valid_username():
    while True:
        try:
            username = input("Please enter a username (no spaces): ")
            if " " in username:
                raise InvalidUsernameError("Username must not contain
spaces.")
            return username
        except InvalidUsernameError as e:
            print(f"Invalid username: {e}")
            print("Please try again.")

Assertions

What are Assertions?
• Assertions are statements that �he�k if a �ondition is true
• If the �ondition is false, an AssertionError is raised
• We �ould use them to �he�k the results of a �al�ulation

. . .

x = 9
y = 10
assert x < y, "x is not smaller than y"
assert isinstance(y, float), "y is not a float"

. . .

>Task: Try to run the �ode above and dis�uss what happens.

. . .
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 Note

isinstance is a built-in fun�tion that �he�ks if an obje�t is an instan�e of a �lass.

Assertions in Action
>Grouptask: Solve the following problem using assertions:

# Implement a function that takes a list of integers and returns the sum of
the numbers.
# 1. Use assertions to check if the input is a list
# 2. Use assertions to check if the list contains only integers.
# 3. If the list contains only integers, return the sum of the numbers

# Your code here

# Test cases
print(sum_of_numbers([1, 2, 3, 4, 5])) # Should print: 15
print(sum_of_numbers([1, 2.0, 3, 4, 5])) # Should print: AssertionError

Debugging

What is Debugging?
• Debugging is the pro�ess of finding and fixing errors in �ode
• We �an use print and assert statements to debug our �ode
• We �an also use debugging tools that are built into most IDEs

Using Print and Assert
• print: �he�k the values of variables at different points
• assert: �he�k �al�ulations or the types of variables

. . .

x = "Hello" # x is a string
print(x)
x = 42.0 # x is a float
print(x)
assert isinstance(x, float), "x is not a float"
assert x == 42.0, "x is not 42.0"

Hello
42.0

. . .

 Note

While this �an be useful, it is not always the best way to debug �ode.
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Using Debugging Tools
• We �an also use debugging tools built into most IDEs
• Allow to step through �ode, set breakpoints, and inspe�t variables
• We will use Zed, but there are many other options

Debugging in Zed
>Task: Open Zed and �opy the following �ode to main.py.

def calculate_average(numbers):
    total = 0
    count = 0
    for num in numbers:
        total += num
        count += 1

    average = total / count
    return average

# Test cases
test_lists = [
    [1, 2, 3, 4, 5],
    [10, 20, 30],
    []
    ]

for i, test_list in enumerate(test_lists):
    print(f"Test case {i + 1}:")
    result = calculate_average(test_list)
    print(f"Average: {result}\n")

Debugging Tools
>Task: Run the �ode and use the debugging tools by �li�king on the small bug i�on in
the lower right �orner to find the error and sele�t run [YOUR PATH TO THE FILE]/main.py.

• Use the breakpoints to pause the exe�ution at a spe�ifi� point
• Use step over, step into and step out to navigate through your �ode
• Use the variable viewer to inspe�t variables at different points

. . .

>Question: What do you think the error is?

. . .

 Note

The enumerate fun�tion used in the �ode is super helpful fun�tion that returns a
tuple �ontaining the index and the value of the item in the list and it is not the error.
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Using Logging
• We �an also use logging to tra�k the exe�ution of a program
• It is a stru�tured way to log errors and other issues
• You �an spe�ify the level of severity for ea�h log message
• Hide messages of a �ertain severity if you want to during exe�ution

. . .

 Note

And that’s it for todays le�ture!
We now have �overed the basi�s of errors, ex�eptions and debugging in Python.
Logging is beyond our s�ope, but it is good to know should you work with larger
�odebases later on.

Literature

Interesting Books
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.

. . .

 Tip

Nothing new here, but these are still great books!

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.
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