
Lecture IV - Handling Data in more than one Di-
mension

Programming with Python

Dr. Tobias Vl�ć ek
Kühne Logisti�s University Hamburg - Fall 2025

Quick Recap of the last Lecture

Functions
• Fun�tions are reusable blo�ks of �ode that perform spe�ifi� tasks
• They �an a��ept inputs (parameters) and return outputs
• def followed by the fun�tion name, parameters and a �olon
• Help in organizing �ode and redu�ing repetition

. . .

def greet(name):
 return f"Welcome to this lecture, {name}!"

print(greet("Students"))

Welcome to this lecture, Students!

Scope
• S�ope determines the visibility and lifetime of variables
• Variables defined inside a fun�tion are lo�al to that fun�tion
• Variables defined outside of all fun�tions are global
• They �an be a��essed from anywhere in the program

. . .

def greet(name):
 greeting = f"Welcome to this lecture, {name}!"
 return greeting

print(greeting) # This will cause an error

>Question: Why does this �ause an error?

Classes
• Classes are blueprints for �reating obje�ts
• They en�apsulate data (attributes) and behavior (methods)

1

• Help in organizing �ode and �reating obje�ts with similar stru�tures

. . .

class Lectures:
 def __init__(self, name, length_minutes):
 self.name = name
 self.length = length_minutes

 def duration(self):
 return f"Lecture '{self.name}' is {self.length} minutes long!"

lecture_4 = Lectures("4. Data in more than one dimension", 90)
print(lecture_4.duration())

Lecture '4. Data in more than one dimension' is 90 minutes long!

Tuples

What are Tuples?
• Tuples are ordered �olle�tions of items
• They are immutable (�annot be �hanged after �reation)
• Help in storing multiple items in a single variable
• Created using the tuple() fun�tion or the () syntax

. . .

my_tuple = (1, 2, 3, 4, 5)
print(my_tuple)

(1, 2, 3, 4, 5)

Tuple Operations
• Tuples support the same operations as strings
• We �an use indexing and sli�ing to a��ess elements
• We �an use the + operator to �on�atenate tuples
• We �an use the * operator to repeat a tuple

. . .

>Question: What will the following �ode print?

my_tuple = (1, 2, 3)
print(my_tuple[1:3])
print(my_tuple + (4, 5, 6))
print(my_tuple * 2)

2

(2, 3)
(1, 2, 3, 4, 5, 6)
(1, 2, 3, 1, 2, 3)

Tuple Methods
• Tuples support the following methods:
‣ count(x): Returns the number of times x appears in the tuple
‣ index(x): Returns the index of the first o��urren�e of x

. . .

>Question: What will this �ode print?

my_tuple = (1, 2, 3, 2, 4, 2)
print(my_tuple.count(2))
print(my_tuple.index(3))

3
2

Tuple Data Types
• Tuples �an �ontain elements of different data types

my_tuple = ("Peter", 25, "Hamburg")
print(my_tuple)

('Peter', 25, 'Hamburg')

. . .

This works as well
my_tuple = "Peter", 25, "Hamburg"
print(my_tuple)

('Peter', 25, 'Hamburg')

. . .

 Note

We �an also �reate tuples by listing the elements separated by �ommas.

Tuples from Functions
• Fun�tions �an return tuples
• This is useful if we want to return multiple values from a fun�tion

3

. . .

def get_student_info(name, age, city):
 return name, age, city

student_info = get_student_info("Peter", 25, "Hamburg")
print(student_info)

('Peter', 25, 'Hamburg')

. . .

>Question: How would you a��ess the age from the tuple?

Tuple Unpacking
• Allows us to assign the elements of a tuple to variables
• The number of variables must mat�h the number of elements
• Use the * operator to assign the remaining elements to a variable

. . .

def get_student_info(name, age, city):
 return name, age, city
name, *rest = get_student_info("Peter", 25, "Hamburg")
print(f"Name: {name}")
print(f"Other info: {rest}")

Name: Peter
Other info: [25, 'Hamburg']

. . .

 Warning

The output is positional, so we have to be �areful with the order of the variables.

Lists

What are Lists?
• Lists are ordered �olle�tions of items
• They are mutable (�an be �hanged after �reation)
• Created using the list() fun�tion or the [] syntax
• They support the same operations as strings and tuples
• Have mu�h more methods and are more versatile than tuples

. . .

4

my_list = [1, 2, 3, 4, 5]
print(my_list)

[1, 2, 3, 4, 5]

. . .

>Question: Any idea why lists support more methods?

List Methods
• Common methods for lists:
‣ count(x): Returns the number of times x appears in the list
‣ append(x): Adds an element x to the end of the list
‣ insert(i, x): Inserts an element x at index i
‣ remove(x): Removes the first o��urren�e of element x
‣ index(x): Returns the index of the first o��urren�e of x
‣ pop([i]): Removes the element at index i and returns it
‣ sort(): Sorts the list in as�ending order
‣ reverse(): Reverses the list

Lists in Action
>Task: Solve the following problem using lists:

Imagine the following shoppping list for this weekend
shopping_list = ["cider", "beer", "bread", "frozen_pizza"]

. . .

• First, add some apples to the list for a healthy option
• Next, remove the �ider as you already have some at home
• Sort all items in the list alphabeti�ally
• Print ea�h item of the list on a new line

. . .

 Tip

You �an use the methods and loops we learned so far to solve the problem.

Sets

What are Sets?
• Sets are unordered �olle�tions of unique elements
• They are mutable (�an be �hanged after �reation)
• Created using the set() fun�tion or the {} syntax
• Supports + and * operations like lists and tuples

5

• Unlike lists and tuples, sets do not support indexing

. . .

my_set = {1, 2, 2, 5, 5}
print(my_set)

{1, 2, 5}

Set Methods
• Common methods for sets:
‣ add(x): Adds an element x to the set
‣ remove(x): Removes an element x from the set
‣ discard(x): Removes an element x from the set if it is present
‣ pop(): Removes and returns an arbitrary element from the set
‣ update(other): Adds all elements from other to the set

Set Theory
• Additional methods are derived from set theory
‣ union(other): New set with elements from both sets
‣ intersection(other): New set with �ommon elements
‣ isdisjoint(other): True if no elements in �ommon
‣ issubset(other): True if subset of other

. . .

 Tip

There are more methods for sets! If you are working intensively with sets, keep that
in mind.

Sets in Action
>Task: Solve the following problem using sets:

You have a list of friends from two different groups
friends_group_1 = ["Neo", "Morpheus", "Trinity", "Cypher"]
friends_group_2 = ["Smith", "Apoc", "Cypher", "Morpheus"]

. . .

• First, find the mutual friends in both groups
• Then �reate a new set of all friends from both groups
• Count the number of friends in total
• Print ea�h item of the set on a new line

. . .

6

 Tip

Noti�e, there is a small error in the given �ode that you have to fix.

Dictionaries

What are Dictionaries?
• Di�tionaries are unordered �olle�tions of key-value pairs
• They are mutable (�an be �hanged after �reation)
• Keys must be unique and immutable
• Values �an be of any type
• Created using the dict() fun�tion or the {} syntax
• As sets we �annot a��ess them by index

. . .

who_am_i = {"name": "Tobias", "age": 30, "city": "Hamburg"}
print(who_am_i)

{'name': 'Tobias', 'age': 30, 'city': 'Hamburg'}

Key-Value Pairs
• We �an a��ess them by their keys, though!
• You �an think of them as a set of key-value pairs

. . .

who_am_i = {"name": "Tobias", "age": 30, "city": "Hamburg"}
print(who_am_i["name"])

Tobias

. . .

 Note

Note, how we �an use the [] operator to a��ess the value of a key?

Dictionary Operations
• Common operations and methods:

• in operation to �he�k if a key is in the di�tionary

• for loop to iterate over the di�tionary

• keys() method to return a view of the di�tionary’s keys

7

• values() method to return a view of the di�tionary’s values

• pop(key[, default]) to remove a key and return its value

Dictionaries in Action
>Task: Solve the following problem using di�tionaries:

Create a dictionary with the following information about yourself: name,
age, city
i_am = {}

. . .

• Add your favorite �olor and food to the di�tionary
• Remove the �ity from the di�tionary
• Print your name and age in a formatted senten�e

Overview of new Data Types

Comparison between Data Types
• Tuple: Immutable, ordered, dupli�ates allowed
• List: Mutable, ordered, dupli�ates allowed
• Set: Mutable, unordered, no dupli�ates
• Di�tionary: Mutable, unordered, no dupli�ates, key-value pairs

. . .

 Tip

This impa�ts your �ode, the operations you �an perform and the speed of your
program. Thus, it makes sense to understand the differen�es and �hoose the right
data type for the task.

When to use which?
• Tuples: store a �olle�tion of items that should not be �hanged
• Lists: store a �olle�tion of items that should be �hanged
• Sets: store a �olle�tion of items that should not be �hanged and dupli�ates are not

allowed
• Di�tionaries: store a �olle�tion of items that should be �hanged, dupli�ates are not

allowed and require key-value pairs

. . .

8

 Tip

You �an �onvert between the data types using tuple(), list(), set() and dict().
Note, that this is not always possible, e.g. you �annot �onvert a list to a di�tionary
without spe�ifying a key.

Speed Differences
• Lists are the most versatile, but slowest
• Tuples are generally faster than lists
• Sets are generally faster than lists and tuples
• Di�tionaries depend, but are generally faster than lists and tuples

import timeit

Number of elements in each data structure
n = 10000000

Setup for each data structure, including the test function
setup_template = """
def test_membership(data_structure, element):
 return element in data_structure
data = {data_structure}
"""

setups = {
 'Tuple': setup_template.format(data_structure=f"tuple(range({n}))"),
 'List': setup_template.format(data_structure=f"list(range({n}))"),
 'Set': setup_template.format(data_structure=f"set(range({n}))"),
 'Dictionary': setup_template.format(data_structure=f"{{i: i for i in
range({n})}}")
}

Measure time for each data structure
print(f"Time taken for a single membership test in {n} elements (in
seconds):")
print("-" * 75)
for name, setup in setups.items():
 stmt = f"test_membership(data, {n-1})" # Test membership of the last
element
 time_taken = timeit.timeit(stmt, setup=setup, number=1)
 print(f"{name:<10}: {time_taken:.8f}")
print("-" * 75)
print("Note, that theses values are machine dependent and just for
illustration!")

Time taken for a single membership test in 10000000 elements (in seconds):

Tuple : 0.03876458
List : 0.04276829
Set : 0.00000179

9

Dictionary: 0.00000158

Note, that theses values are machine dependent and just for illustration!

Comprehensions
• Comprehensions provide a �on�ise way to �reate data stru�tures
‣ Tuple �omprehensions: (x for x in iterable)
‣ List �omprehensions: [x for x in iterable]
‣ Set �omprehensions: {x for x in iterable}
‣ Di�tionary �omprehensions: {x: y for x, y in iterable}

. . .

 Tip

The iterable �an be any obje�t that �an be iterated over, e.g. a list, tuple, set,
di�tionary, et�.

Iterables
• We have already introdu�ed those!
• We �an use the for loop to iterate over an iterable

. . .

shopping_list = ["cider", "beer", "bread", "frozen_pizza"]
for item in shopping_list:
 print(item)

cider
beer
bread
frozen_pizza

. . .

who_am_i = {"name": "Tobias", "age": 30, "city": "Hamburg"}
for key, value in who_am_i.items():
 print(f"{key}: {value}")

name: Tobias
age: 30
city: Hamburg

Nesting
• We �an nest data stru�tures within ea�h other
• This is useful if we want to store more �omplex data

10

. . .

normal_list = [1, 2, 3, 4, 5]
nested_list = ["Hello, World!", normal_list, (1,2)]

print(nested_list)
print(nested_list[2])

['Hello, World!', [1, 2, 3, 4, 5], (1, 2)]
(1, 2)

. . .

 Tip

You �an also nest lists within lists within lists, et�.

I/O

Input/Output
• A �ommon task in programming is to intera�t with users
• Remember the input() fun�tion from the first le�ture?
• It is a �lassi�al example of user input
• An example of output is the print() fun�tion

. . .

name = input("Please enter your name: ")
print(f"Hello, {name}!")

. . .

 Note

Thus, we have already worked with I/O in Python!

Reading and Writing Files
• We also need to intera�t with data
• File handling in Python is quite simple:
‣ Use open(file_name, mode) to open a file
‣ Modes: "r" (read), "w" (write), "a" (append)

• Basi� operations:
‣ Read: file.read()
‣ Write: file.write(content)
‣ Close: file.close()

11

File Handling in Action

file = open("hi.txt", "w") # This creates a file called "hi.txt"
file.write("Hello, World!") # This writes "Hello, World!" to the file
file.close() # This closes the file
print("File successfully written")

File successfully written

. . .

>Question: Any ideas how to read the file?

. . .

file = open("hi.txt", "r") # This opens the file "hi.txt"
content = file.read() # This reads the content of the file
file.close() # This closes the file
print(content) # This prints the content of the file

Hello, World!

. . .

 Tip

Close files with file.close() to free up system resour�es and ensure data is
properly saved.

Easier File Handling with with
• We �an also use the with statement to open a file
• This ensures the file is properly �losed after its handling finishes
• It’s a good pra�ti�e to use it when working with files

with open("hi_again.txt", "w") as file:
 file.write("Hello again, World!")

print("File successfully written")

File successfully written

. . .

>Task: Open the file hi_again.txt and print its �ontent using with

Working with other file types
• Naturally, we also want to work with other file types!
• Reading and writing CSV files is a �ommon tasks in data analysis

12

• Ex�el files are used in many appli�ations and �ompanies
• We will see how to do this later in the �ourse

. . .

 Note

And that’s it for todays le�ture!
We now have �overed the basi�s of tuples, sets, lists and di�tionaries as well as
some basi� file handling. For now, just remember that advan�ed reading and writing
is possible and that there are libraries that help with this.

Literature {.title}

Interesting Books
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.

. . .

 Tip

Nothing new here, but these are still great books!

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.

13

https://greenteapress.com/wp/think-python-3rd-edition/
../general/literature.qmd
../general/literature.qmd

	Quick Recap of the last Lecture
	Functions
	Scope
	Classes

	Tuples
	What are Tuples?
	Tuple Operations
	Tuple Methods
	Tuple Data Types
	Tuples from Functions
	Tuple Unpacking

	Lists
	What are Lists?
	List Methods
	Lists in Action

	Sets
	What are Sets?
	Set Methods
	Set Theory
	Sets in Action

	Dictionaries
	What are Dictionaries?
	Key-Value Pairs
	Dictionary Operations
	Dictionaries in Action

	Overview of new Data Types
	Comparison between Data Types
	When to use which?
	Speed Differences
	Comprehensions
	Iterables
	Nesting

	I/O
	Input/Output
	Reading and Writing Files
	File Handling in Action
	Easier File Handling with with
	Working with other file types
	Interesting Books

