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Quick Recap of the last Lecture

Functions
• Fun�tions are reusable blo�ks of �ode that perform spe�ifi� tasks
• They �an a��ept inputs (parameters) and return outputs
• def followed by the fun�tion name, parameters and a �olon
• Help in organizing �ode and redu�ing repetition

. . .

def greet(name):
    return f"Welcome to this lecture, {name}!"

print(greet("Students"))

Welcome to this lecture, Students!

Scope
• S�ope determines the visibility and lifetime of variables
• Variables defined inside a fun�tion are lo�al to that fun�tion
• Variables defined outside of all fun�tions are global
• They �an be a��essed from anywhere in the program

. . .

def greet(name):
    greeting = f"Welcome to this lecture, {name}!"
    return greeting

print(greeting) # This will cause an error

>Question: Why does this �ause an error?

Classes
• Classes are blueprints for �reating obje�ts
• They en�apsulate data (attributes) and behavior (methods)
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• Help in organizing �ode and �reating obje�ts with similar stru�tures

. . .

class Lectures:
    def __init__(self, name, length_minutes):
        self.name = name
        self.length = length_minutes

    def duration(self):
        return f"Lecture '{self.name}' is {self.length} minutes long!"

lecture_4 = Lectures("4. Data in more than one dimension", 90)
print(lecture_4.duration())

Lecture '4. Data in more than one dimension' is 90 minutes long!

Tuples

What are Tuples?
• Tuples are ordered �olle�tions of items
• They are immutable (�annot be �hanged after �reation)
• Help in storing multiple items in a single variable
• Created using the tuple() fun�tion or the () syntax

. . .

my_tuple = (1, 2, 3, 4, 5)
print(my_tuple)

(1, 2, 3, 4, 5)

Tuple Operations
• Tuples support the same operations as strings
• We �an use indexing and sli�ing to a��ess elements
• We �an use the + operator to �on�atenate tuples
• We �an use the * operator to repeat a tuple

. . .

>Question: What will the following �ode print?

my_tuple = (1, 2, 3)
print(my_tuple[1:3])
print(my_tuple + (4, 5, 6))
print(my_tuple * 2)
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(2, 3)
(1, 2, 3, 4, 5, 6)
(1, 2, 3, 1, 2, 3)

Tuple Methods
• Tuples support the following methods:
‣ count(x): Returns the number of times x appears in the tuple
‣ index(x): Returns the index of the first o��urren�e of x

. . .

>Question: What will this �ode print?

my_tuple = (1, 2, 3, 2, 4, 2)
print(my_tuple.count(2))
print(my_tuple.index(3))

3
2

Tuple Data Types
• Tuples �an �ontain elements of different data types

my_tuple = ("Peter", 25, "Hamburg")
print(my_tuple)

('Peter', 25, 'Hamburg')

. . .

# This works as well
my_tuple = "Peter", 25, "Hamburg"
print(my_tuple)

('Peter', 25, 'Hamburg')

. . .

 Note

We �an also �reate tuples by listing the elements separated by �ommas.

Tuples from Functions
• Fun�tions �an return tuples
• This is useful if we want to return multiple values from a fun�tion

3



. . .

def get_student_info(name, age, city):
    return name, age, city

student_info = get_student_info("Peter", 25, "Hamburg")
print(student_info)

('Peter', 25, 'Hamburg')

. . .

>Question: How would you a��ess the age from the tuple?

Tuple Unpacking
• Allows us to assign the elements of a tuple to variables
• The number of variables must mat�h the number of elements
• Use the * operator to assign the remaining elements to a variable

. . .

def get_student_info(name, age, city):
    return name, age, city
name, *rest = get_student_info("Peter", 25, "Hamburg")
print(f"Name: {name}")
print(f"Other info: {rest}")

Name: Peter
Other info: [25, 'Hamburg']

. . .

 Warning

The output is positional, so we have to be �areful with the order of the variables.

Lists

What are Lists?
• Lists are ordered �olle�tions of items
• They are mutable (�an be �hanged after �reation)
• Created using the list() fun�tion or the [] syntax
• They support the same operations as strings and tuples
• Have mu�h more methods and are more versatile than tuples

. . .
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my_list = [1, 2, 3, 4, 5]
print(my_list)

[1, 2, 3, 4, 5]

. . .

>Question: Any idea why lists support more methods?

List Methods
• Common methods for lists:
‣ count(x): Returns the number of times x appears in the list
‣ append(x): Adds an element x to the end of the list
‣ insert(i, x): Inserts an element x at index i
‣ remove(x): Removes the first o��urren�e of element x
‣ index(x): Returns the index of the first o��urren�e of x
‣ pop([i]): Removes the element at index i and returns it
‣ sort(): Sorts the list in as�ending order
‣ reverse(): Reverses the list

Lists in Action
>Task: Solve the following problem using lists:

# Imagine the following shoppping list for this weekend
shopping_list = ["cider", "beer", "bread", "frozen_pizza"]

. . .

• First, add some apples to the list for a healthy option
• Next, remove the �ider as you already have some at home
• Sort all items in the list alphabeti�ally
• Print ea�h item of the list on a new line

. . .

 Tip

You �an use the methods and loops we learned so far to solve the problem.

Sets

What are Sets?
• Sets are unordered �olle�tions of unique elements
• They are mutable (�an be �hanged after �reation)
• Created using the set() fun�tion or the {} syntax
• Supports + and * operations like lists and tuples
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• Unlike lists and tuples, sets do not support indexing

. . .

my_set = {1, 2, 2, 5, 5}
print(my_set)

{1, 2, 5}

Set Methods
• Common methods for sets:
‣ add(x): Adds an element x to the set
‣ remove(x): Removes an element x from the set
‣ discard(x): Removes an element x from the set if it is present
‣ pop(): Removes and returns an arbitrary element from the set
‣ update(other): Adds all elements from other to the set

Set Theory
• Additional methods are derived from set theory
‣ union(other): New set with elements from both sets
‣ intersection(other): New set with �ommon elements
‣ isdisjoint(other): True if no elements in �ommon
‣ issubset(other): True if subset of other

. . .

 Tip

There are more methods for sets! If you are working intensively with sets, keep that
in mind.

Sets in Action
>Task: Solve the following problem using sets:

# You have a list of friends from two different groups
friends_group_1 = ["Neo", "Morpheus", "Trinity", "Cypher"]
friends_group_2 = [ "Smith", "Apoc", "Cypher", "Morpheus"]

. . .

• First, find the mutual friends in both groups
• Then �reate a new set of all friends from both groups
• Count the number of friends in total
• Print ea�h item of the set on a new line

. . .
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 Tip

Noti�e, there is a small error in the given �ode that you have to fix.

Dictionaries

What are Dictionaries?
• Di�tionaries are unordered �olle�tions of key-value pairs
• They are mutable (�an be �hanged after �reation)
• Keys must be unique and immutable
• Values �an be of any type
• Created using the dict() fun�tion or the {} syntax
• As sets we �annot a��ess them by index

. . .

who_am_i = {"name": "Tobias", "age": 30, "city": "Hamburg"}
print(who_am_i)

{'name': 'Tobias', 'age': 30, 'city': 'Hamburg'}

Key-Value Pairs
• We �an a��ess them by their keys, though!
• You �an think of them as a set of key-value pairs

. . .

who_am_i = {"name": "Tobias", "age": 30, "city": "Hamburg"}
print(who_am_i["name"])

Tobias

. . .

 Note

Note, how we �an use the [] operator to a��ess the value of a key?

Dictionary Operations
• Common operations and methods:

• in operation to �he�k if a key is in the di�tionary

• for loop to iterate over the di�tionary

• keys() method to return a view of the di�tionary’s keys
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• values() method to return a view of the di�tionary’s values

• pop(key[, default]) to remove a key and return its value

Dictionaries in Action
>Task: Solve the following problem using di�tionaries:

# Create a dictionary with the following information about yourself: name,
age, city
i_am = {}

. . .

• Add your favorite �olor and food to the di�tionary
• Remove the �ity from the di�tionary
• Print your name and age in a formatted senten�e

Overview of new Data Types

Comparison between Data Types
• Tuple: Immutable, ordered, dupli�ates allowed
• List: Mutable, ordered, dupli�ates allowed
• Set: Mutable, unordered, no dupli�ates
• Di�tionary: Mutable, unordered, no dupli�ates, key-value pairs

. . .

 Tip

This impa�ts your �ode, the operations you �an perform and the speed of your
program. Thus, it makes sense to understand the differen�es and �hoose the right
data type for the task.

When to use which?
• Tuples: store a �olle�tion of items that should not be �hanged
• Lists: store a �olle�tion of items that should be �hanged
• Sets: store a �olle�tion of items that should not be �hanged and dupli�ates are not

allowed
• Di�tionaries: store a �olle�tion of items that should be �hanged, dupli�ates are not

allowed and require key-value pairs

. . .
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 Tip

You �an �onvert between the data types using tuple(), list(), set() and dict().
Note, that this is not always possible, e.g. you �annot �onvert a list to a di�tionary
without spe�ifying a key.

Speed Differences
• Lists are the most versatile, but slowest
• Tuples are generally faster than lists
• Sets are generally faster than lists and tuples
• Di�tionaries depend, but are generally faster than lists and tuples

import timeit

# Number of elements in each data structure
n = 10000000

# Setup for each data structure, including the test function
setup_template = """
def test_membership(data_structure, element):
    return element in data_structure
data = {data_structure}
"""

setups = {
    'Tuple': setup_template.format(data_structure=f"tuple(range({n}))"),
    'List': setup_template.format(data_structure=f"list(range({n}))"),
    'Set': setup_template.format(data_structure=f"set(range({n}))"),
    'Dictionary': setup_template.format(data_structure=f"{{i: i for i in
range({n})}}")
}

# Measure time for each data structure
print(f"Time taken for a single membership test in {n} elements (in
seconds):")
print("-" * 75)
for name, setup in setups.items():
    stmt = f"test_membership(data, {n-1})"  # Test membership of the last
element
    time_taken = timeit.timeit(stmt, setup=setup, number=1)
    print(f"{name:<10}: {time_taken:.8f}")
print("-" * 75)
print("Note, that theses values are machine dependent and just for
illustration!")

Time taken for a single membership test in 10000000 elements (in seconds):
---------------------------------------------------------------------------
Tuple     : 0.03876458
List      : 0.04276829
Set       : 0.00000179
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Dictionary: 0.00000158
---------------------------------------------------------------------------
Note, that theses values are machine dependent and just for illustration!

Comprehensions
• Comprehensions provide a �on�ise way to �reate data stru�tures
‣ Tuple �omprehensions: (x for x in iterable)
‣ List �omprehensions: [x for x in iterable]
‣ Set �omprehensions: {x for x in iterable}
‣ Di�tionary �omprehensions: {x: y for x, y in iterable}

. . .

 Tip

The iterable �an be any obje�t that �an be iterated over, e.g.  a list, tuple, set,
di�tionary, et�.

Iterables
• We have already introdu�ed those!
• We �an use the for loop to iterate over an iterable

. . .

shopping_list = ["cider", "beer", "bread", "frozen_pizza"]
for item in shopping_list:
    print(item)

cider
beer
bread
frozen_pizza

. . .

who_am_i = {"name": "Tobias", "age": 30, "city": "Hamburg"}
for key, value in who_am_i.items():
    print(f"{key}: {value}")

name: Tobias
age: 30
city: Hamburg

Nesting
• We �an nest data stru�tures within ea�h other
• This is useful if we want to store more �omplex data
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. . .

normal_list = [1, 2, 3, 4, 5]
nested_list = ["Hello, World!", normal_list, (1,2)]

print(nested_list)
print(nested_list[2])

['Hello, World!', [1, 2, 3, 4, 5], (1, 2)]
(1, 2)

. . .

 Tip

You �an also nest lists within lists within lists, et�.

I/O

Input/Output
• A �ommon task in programming is to intera�t with users
• Remember the input() fun�tion from the first le�ture?
• It is a �lassi�al example of user input
• An example of output is the print() fun�tion

. . .

name = input("Please enter your name: ")
print(f"Hello, {name}!")

. . .

 Note

Thus, we have already worked with I/O in Python!

Reading and Writing Files
• We also need to intera�t with data
• File handling in Python is quite simple:
‣ Use open(file_name, mode) to open a file
‣ Modes: "r" (read), "w" (write), "a" (append)

• Basi� operations:
‣ Read: file.read()
‣ Write: file.write(content)
‣ Close: file.close()
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File Handling in Action

file = open("hi.txt", "w") # This creates a file called "hi.txt"
file.write("Hello, World!") # This writes "Hello, World!" to the file
file.close() # This closes the file
print("File successfully written")

File successfully written

. . .

>Question: Any ideas how to read the file?

. . .

file = open("hi.txt", "r") # This opens the file "hi.txt"
content = file.read() # This reads the content of the file
file.close() # This closes the file
print(content) # This prints the content of the file

Hello, World!

. . .

 Tip

Close files with file.close() to free up system resour�es and ensure data is
properly saved.

Easier File Handling with with
• We �an also use the with statement to open a file
• This ensures the file is properly �losed after its handling finishes
• It’s a good pra�ti�e to use it when working with files

with open("hi_again.txt", "w") as file:
    file.write("Hello again, World!")

print("File successfully written")

File successfully written

. . .

>Task: Open the file hi_again.txt and print its �ontent using with

Working with other file types
• Naturally, we also want to work with other file types!
• Reading and writing CSV files is a �ommon tasks in data analysis
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• Ex�el files are used in many appli�ations and �ompanies
• We will see how to do this later in the �ourse

. . .

 Note

And that’s it for todays le�ture!
We now have �overed the basi�s of tuples, sets, lists and di�tionaries as well as
some basi� file handling. For now, just remember that advan�ed reading and writing
is possible and that there are libraries that help with this.

Literature {.title}

Interesting Books
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.

. . .

 Tip

Nothing new here, but these are still great books!

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.
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