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Quick Recap of the last Lecture

Slicing
• With sli�ing we �an get a range of elements from a sequen�e
• Syntax: sequence[start:stop:step]
• start is the index of the first element to in�lude
• stop is the index of the first element to ex�lude
• step is the in�rement between indi�es

. . .

 Tip

If left out, the step defaults to 1. Else, start defaults to 0 and stop defaults to the
length of the sequen�e. Negative indi�es �an be used to sli�e from the end of the
sequen�e.

Comparison Operators
• Comparison operators are used to �ompare two values
• The result of a �omparison is a boolean value (True or False)
• Operators in�lude: ==, !=, >, <, >=, <=

. . .

> Question: Is this True?

# Careful here!
one = 1
two = 1
print(one == two)

True

Control Structures
• Control stru�tures allow us to �ontrol the flow of exe�ution
• It in�ludes �onditional statements and loops
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• Conditional statements: if, elif, else
• Loops: for and while
• Control flow statements (in loops): continue and break

. . .

 Note

The statement continue skips the rest of the �urrent iteration and moves to the next
one in a loop while the break statement exits the loop entirely.

Functions in Detail

What is a Function?
• Fun�tions �an a��ept inputs (parameters) and return outputs
• En�apsulate logi�, making �ode easier to maintain
• Fun�tions �an be �alled multiple times from different part
• They help redu�e �ode dupli�ation and improve readability

# I'm a function.
type(print)

builtin_function_or_method

. . .

! Important

Remember, methods are fun�tions that are �alled on an obje�t.

Some Built-in Functions already used
• print(): Print text to �onsole
• input(): Read text from �onsole
• len(): Get the length of a sequen�e
• range(): Generate a sequen�e of numbers
• round(): Round a number to a spe�ified number of de�imal pla�es
• type(): Get the type of an obje�t
• int(): Convert a string to an integer
• float(): Convert a string to a floating-point number
• str(): Convert an obje�t to a string

Defining a Function
• Use the def keyword followed by the fun�tion name
• Inside parentheses we list the inputs (parameters)
• The �ode blo�k within every fun�tion starts with a �olon (:)
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• It is indented, just as the loops from the last le�ture

. . .

def greet(a_parameter):
    print(f"Hello, {a_parameter}!")
greet("Students")

Hello, Students!

. . .

 Tip

It is �ommon pra�ti�e to leave out one line after the definition of a fun�tion,
although we will not always do that in the le�ture to save spa�e on the slides.

Comment Functions
• It is good pra�ti�e to in�lude a �omment at the top of your fun�tions
• If you do it with three """, it will appear in the help menu

. . .

def greet():
    """
    This function will be used later and has currently
    absolutely no use for anything.
    """
    pass # Necessary placeholder to avoid error

help(greet)

Help on function greet in module __main__:

greet()
    This function will be used later and has currently
    absolutely no use for anything.

Naming Functions (and Methods)
• Fun�tion names should be short, but des�riptive
• Use unders�ores (_) instead of spa�es in the names
• Avoid using Python keywords as fun�tion names (e.g., print)
• Try to avoid using built-in fun�tions and methods that have a similar name (e.g., sum

and len)

> Question: Whi�h of the following is a good name for a fun�tion?

• myfunctionthatmultipliesvalues
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• multiply_two_values

• multiplyTwoValues

Function Parameters
• Parameters are variables that the fun�tion a��epts
• They allow you to pass data to the fun�tion
• Try to name them as variables: short and meaningful
• We �an also leave them out or define several inputs!

def greet():
    print("Hello, stranger!")
greet()

Hello, stranger!

Function Arguments
• Arguments are the a�tual values passed to the fun�tion
• They repla�e the parameters in the fun�tion definition

. . .

> Question: What �ould be the �orre�t arguments here?

def greet(university_name, lecture):
    print(f"Hello, students at the {university_name}!")
    print(f"You are in lecture {lecture}!")

# Your code here

Initializing Parameters
• We �an also initialize parameters to a default value!
• To do this we use the = sign and provide it with a value
• This is �alled a keyword argument

def greet(lecture="Programming with Python"):
    print(f"You are in lecture '{lecture}'!")

greet()
greet("Super Advanced Programming with Python")

You are in lecture 'Programming with Python'!
You are in lecture 'Super Advanced Programming with Python'!

. . .
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 Tip

This is espe�ially useful when we want to avoid errors due to missing arguments!

Multiple Parameters
• We �an also have multiple parameters in a fun�tion definition
• They are �alled positional arguments and are separated by �ommas
• When we �all them, they must be provided in the same order
• Alternatively, we �ould �all them by name, as for example in this fun�tion �all
print("h","i",sep='')

. . .

> Question: What will be printed here?

def call_parameters(parameter_a, parameter_b):
    print(parameter_a, parameter_b)

call_parameters(parameter_b="Hello", parameter_a="World")

World Hello

Function Return Values
• Fun�tions �an return values using the return statement
• The return statement ends the fun�tion
• It then returns the spe�ified value

. . .

def simple_multiplication(a,b):
    result = a*b
    return result
print(simple_multiplication(2,21))

42

. . .

def simple_multiplication(a,b):
    return a*b # even shorter!
print(simple_multiplication(2,21))

42

Access return values
• We �an also save the return value from a fun�tion in a variable
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• That way we �an use it later on in the program

. . .

def simple_multiplication(a,b):
    return a*b # even shorter!

result = simple_multiplication(2,21)
print(result)

42

Returning None
• If we don’t spe�ify return, fun�tions will return None

def simple_multiplication(a,b):
    result = a*b

print(simple_multiplication(2,21))

None

. . .

> Task: Come up with a fun�tion that �he�ks whether a number is positive or negative.
It returns "positive" for positive numbers and "negative" for negative numbers. If the
number is zero, it returns None.

. . .

 Tip

You �an also use multiple return statements in a fun�tion.

Recursion
• Re�ursion is a te�hnique where a fun�tion �alls itself
• Helps to break down problems into smaller problems

. . .

def fibonacci(n): # Classical example to introduce recursion
    if n <= 1:
        return n
    else:
        return fibonacci(n-1) + fibonacci(n-2)

print(fibonacci(6))
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. . .

 Note

Re�ursion �an be a powerful tool, but it �an also be quite tri�ky to get right.

Scope

Function Scope
• Variables defined inside a fun�tion are lo�al to that fun�tion
• They �annot be a��essed outside the fun�tion

. . .

def greet(name):
    greeting = f"Hello, {name}!"

print(greeting)  # This will cause an error

. . .

> Question: Any idea how to a��ess greeting?

Global Scope
• Variables defined outside all fun�tions are in the global s�ope
• They �an be a��essed from anywhere in the program

. . .

greeting = "Hello, Stranger!"
def greet(name):
   greeting = f"Hello, {name}!"
   return greeting
print(greet("Students")) # Greet students
print(greeting) # Greet ????

Hello, Students!
Hello, Stranger!

. . .

! Important

We don’t �hange global variables inside a fun�tion! The original value �an still be
a��essed from outside the fun�tion.
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Global Keyword
• Still, we �an �hange the value of greeting from inside a fun�tion!
• By using the global keyword to modify a global variable

. . .

greeting = "Hello, Stranger!"

def greet(name):
   global greeting
   greeting = f"Hello, {name}!"
   return greeting

print(greet("Students")) # Greet students
print(greeting) # Greet students again

Hello, Students!
Hello, Students!

. . .

>Question: This �an be �onfusing. Do you think you got the idea?

Classes

Classes
• Classes are blueprints for �reating obje�ts
• They en�apsulate data (attributes) and behavior (methods)
• Obje�ts are instan�es of �lasses
• Methods are fun�tions that are defined within a �lass

. . .

class Students: # Class definition
    def know_answer(self): # Method definition
        print(f"They know the answer to all questions.")

student = Students() # Object instantiation
student.know_answer()

They know the answer to all questions.

Self
• Classes �an be quite tri�ky at first, espe�ially the self keyword
• When we �all self in a method, it refers to the obje�t itself
• It is used to a��ess the attributes and methods of the �lass
• self always needs to be in�luded in method definitions

. . .
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# This won't work as self is missing
class Students: # Class definition
    def know_answer(): # Method definition without self
        print(f"They know the answer to all questions.")

student = Students()
student.know_answer()

. . .

>Task: Try it yourself, what is the error?

Naming Classes
• Classes �an be named anything, but it is �ommon to use the plural form of their name

(e.g., People)
• CamelCase is used for �lass names, and snake_�ase is used for method and attribute

names (e.g., TallPeople)
• Classes are usually defined in a file with the same name as their �lass, but with a .py

extension

. . .

Question: Whi�h of the following is a good �lass name? smart_student, SmartStudent,
or SmartStudents

Class Attributes
• Class attributes are attributes that are shared by all �lass instan�es
• They are defined within the �lass but outside any methods

. . .

>Question: What do you think will happen here?

class Students: # Class definition
    smart = True # Class attribute

student_A = Students() # Object instantiation student_A
student_B = Students() # Object instantiation student_B

print(student_A.smart)
print(student_B.smart)

True
True

Instance Attributes
• Instan�e attributes are attributes unique to ea�h �lass instan�e
• They are defined within the __init__ method
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class Student: # Class definition
    def __init__(self, name, is_smart): # Method for initalization
        self.name = name
        self.smart = is_smart
    def knows_answer(self): # Method to be called
        if self.smart:
            print(f"{self.name} knows the answer to the question.")
        else:
            print(f"{self.name} does not know the answer to the question.")

student = Student("Buddy",False) # Note, we don't need to call self here!
student.knows_answer()

Buddy does not know the answer to the question.

Inheritance
• Inheritan�e allows a �lass to inherit attributes and methods
• The �lass that inherits is �alled the sub�lass
• The �lass that is being inherited from is �alled the super�lass

. . .

 Tip

Don’t worry!   It �an be quite mu�h right now. Hang in there and soon it will get
easier again!

Inheritance in Action

class Student: # Superclass
    def __init__(self, name):
        self.name = name
    def when_asked(self):
        pass

class SmartStudent(Student): # Subclass
    def when_asked(self):
        return f"{self.name} knows the answer!"

class LazyStudent(Student): # Subclass
    def when_asked(self):
        return f"{self.name} has to ask ChatGPT!"

>Task: Create two students. One is smart and the other one is lazy. Make sure that both
students rea�tion to a question is printed.

Encapsulation
• En�apsulation is the �on�ept of bundling data (attributes) and methods (behavior)

that operate on the data into a single unit (�lass)
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• It is a key aspe�t of obje�t oriented programming (OOP)
• It helps in organizing �ode and �ontrolling a��ess

. . .

 Note

Fortunately, this is an introdu�tion to Python, so we won’t go into details of en�ap-
sulation.

The End
• Interested in more detail about �lasses and OOP?
• Che�k out a��ess modifiers, getters and setters
• They are definitely a bit more �ompli�ated for beginners…
• Though they are worth learning if you build �omplex programs

. . .

 Note

And that’s it for todays le�ture!
We now have �overed the basi�s of funtions and �lasses. We will �ontinue with
some slightly easier topi�s in the next le�tures.

Literature

Interesting Book to dive deeper
• Thomas, D., & Hunt, A. (2019). The pragmati� programmer, 20th anniversary edition:

Journey to mastery (Se�ond edition). Addison-Wesley.

. . .

 Tip

A fantasti� textbook to understand the prin�iples of modern software development
and how to �reate effe�tive software. Also available as a really good audiobook!

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.
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