
Lecture III - Building Reusable Functions

Programming with Python

Dr. Tobias Vl�ć ek
Kühne Logisti�s University Hamburg - Fall 2025

Quick Recap of the last Lecture

Slicing
• With sli�ing we �an get a range of elements from a sequen�e
• Syntax: sequence[start:stop:step]
• start is the index of the first element to in�lude
• stop is the index of the first element to ex�lude
• step is the in�rement between indi�es

. . .

 Tip

If left out, the step defaults to 1. Else, start defaults to 0 and stop defaults to the
length of the sequen�e. Negative indi�es �an be used to sli�e from the end of the
sequen�e.

Comparison Operators
• Comparison operators are used to �ompare two values
• The result of a �omparison is a boolean value (True or False)
• Operators in�lude: ==, !=, >, <, >=, <=

. . .

> Question: Is this True?

Careful here!
one = 1
two = 1
print(one == two)

True

Control Structures
• Control stru�tures allow us to �ontrol the flow of exe�ution
• It in�ludes �onditional statements and loops

1

• Conditional statements: if, elif, else
• Loops: for and while
• Control flow statements (in loops): continue and break

. . .

 Note

The statement continue skips the rest of the �urrent iteration and moves to the next
one in a loop while the break statement exits the loop entirely.

Functions in Detail

What is a Function?
• Fun�tions �an a��ept inputs (parameters) and return outputs
• En�apsulate logi�, making �ode easier to maintain
• Fun�tions �an be �alled multiple times from different part
• They help redu�e �ode dupli�ation and improve readability

I'm a function.
type(print)

builtin_function_or_method

. . .

! Important

Remember, methods are fun�tions that are �alled on an obje�t.

Some Built-in Functions already used
• print(): Print text to �onsole
• input(): Read text from �onsole
• len(): Get the length of a sequen�e
• range(): Generate a sequen�e of numbers
• round(): Round a number to a spe�ified number of de�imal pla�es
• type(): Get the type of an obje�t
• int(): Convert a string to an integer
• float(): Convert a string to a floating-point number
• str(): Convert an obje�t to a string

Defining a Function
• Use the def keyword followed by the fun�tion name
• Inside parentheses we list the inputs (parameters)
• The �ode blo�k within every fun�tion starts with a �olon (:)

2

• It is indented, just as the loops from the last le�ture

. . .

def greet(a_parameter):
 print(f"Hello, {a_parameter}!")
greet("Students")

Hello, Students!

. . .

 Tip

It is �ommon pra�ti�e to leave out one line after the definition of a fun�tion,
although we will not always do that in the le�ture to save spa�e on the slides.

Comment Functions
• It is good pra�ti�e to in�lude a �omment at the top of your fun�tions
• If you do it with three """, it will appear in the help menu

. . .

def greet():
 """
 This function will be used later and has currently
 absolutely no use for anything.
 """
 pass # Necessary placeholder to avoid error

help(greet)

Help on function greet in module __main__:

greet()
 This function will be used later and has currently
 absolutely no use for anything.

Naming Functions (and Methods)
• Fun�tion names should be short, but des�riptive
• Use unders�ores (_) instead of spa�es in the names
• Avoid using Python keywords as fun�tion names (e.g., print)
• Try to avoid using built-in fun�tions and methods that have a similar name (e.g., sum

and len)

> Question: Whi�h of the following is a good name for a fun�tion?

• myfunctionthatmultipliesvalues

3

• multiply_two_values

• multiplyTwoValues

Function Parameters
• Parameters are variables that the fun�tion a��epts
• They allow you to pass data to the fun�tion
• Try to name them as variables: short and meaningful
• We �an also leave them out or define several inputs!

def greet():
 print("Hello, stranger!")
greet()

Hello, stranger!

Function Arguments
• Arguments are the a�tual values passed to the fun�tion
• They repla�e the parameters in the fun�tion definition

. . .

> Question: What �ould be the �orre�t arguments here?

def greet(university_name, lecture):
 print(f"Hello, students at the {university_name}!")
 print(f"You are in lecture {lecture}!")

Your code here

Initializing Parameters
• We �an also initialize parameters to a default value!
• To do this we use the = sign and provide it with a value
• This is �alled a keyword argument

def greet(lecture="Programming with Python"):
 print(f"You are in lecture '{lecture}'!")

greet()
greet("Super Advanced Programming with Python")

You are in lecture 'Programming with Python'!
You are in lecture 'Super Advanced Programming with Python'!

. . .

4

 Tip

This is espe�ially useful when we want to avoid errors due to missing arguments!

Multiple Parameters
• We �an also have multiple parameters in a fun�tion definition
• They are �alled positional arguments and are separated by �ommas
• When we �all them, they must be provided in the same order
• Alternatively, we �ould �all them by name, as for example in this fun�tion �all
print("h","i",sep='')

. . .

> Question: What will be printed here?

def call_parameters(parameter_a, parameter_b):
 print(parameter_a, parameter_b)

call_parameters(parameter_b="Hello", parameter_a="World")

World Hello

Function Return Values
• Fun�tions �an return values using the return statement
• The return statement ends the fun�tion
• It then returns the spe�ified value

. . .

def simple_multiplication(a,b):
 result = a*b
 return result
print(simple_multiplication(2,21))

42

. . .

def simple_multiplication(a,b):
 return a*b # even shorter!
print(simple_multiplication(2,21))

42

Access return values
• We �an also save the return value from a fun�tion in a variable

5

• That way we �an use it later on in the program

. . .

def simple_multiplication(a,b):
 return a*b # even shorter!

result = simple_multiplication(2,21)
print(result)

42

Returning None
• If we don’t spe�ify return, fun�tions will return None

def simple_multiplication(a,b):
 result = a*b

print(simple_multiplication(2,21))

None

. . .

> Task: Come up with a fun�tion that �he�ks whether a number is positive or negative.
It returns "positive" for positive numbers and "negative" for negative numbers. If the
number is zero, it returns None.

. . .

 Tip

You �an also use multiple return statements in a fun�tion.

Recursion
• Re�ursion is a te�hnique where a fun�tion �alls itself
• Helps to break down problems into smaller problems

. . .

def fibonacci(n): # Classical example to introduce recursion
 if n <= 1:
 return n
 else:
 return fibonacci(n-1) + fibonacci(n-2)

print(fibonacci(6))

6

8

. . .

 Note

Re�ursion �an be a powerful tool, but it �an also be quite tri�ky to get right.

Scope

Function Scope
• Variables defined inside a fun�tion are lo�al to that fun�tion
• They �annot be a��essed outside the fun�tion

. . .

def greet(name):
 greeting = f"Hello, {name}!"

print(greeting) # This will cause an error

. . .

> Question: Any idea how to a��ess greeting?

Global Scope
• Variables defined outside all fun�tions are in the global s�ope
• They �an be a��essed from anywhere in the program

. . .

greeting = "Hello, Stranger!"
def greet(name):
 greeting = f"Hello, {name}!"
 return greeting
print(greet("Students")) # Greet students
print(greeting) # Greet ????

Hello, Students!
Hello, Stranger!

. . .

! Important

We don’t �hange global variables inside a fun�tion! The original value �an still be
a��essed from outside the fun�tion.

7

Global Keyword
• Still, we �an �hange the value of greeting from inside a fun�tion!
• By using the global keyword to modify a global variable

. . .

greeting = "Hello, Stranger!"

def greet(name):
 global greeting
 greeting = f"Hello, {name}!"
 return greeting

print(greet("Students")) # Greet students
print(greeting) # Greet students again

Hello, Students!
Hello, Students!

. . .

>Question: This �an be �onfusing. Do you think you got the idea?

Classes

Classes
• Classes are blueprints for �reating obje�ts
• They en�apsulate data (attributes) and behavior (methods)
• Obje�ts are instan�es of �lasses
• Methods are fun�tions that are defined within a �lass

. . .

class Students: # Class definition
 def know_answer(self): # Method definition
 print(f"They know the answer to all questions.")

student = Students() # Object instantiation
student.know_answer()

They know the answer to all questions.

Self
• Classes �an be quite tri�ky at first, espe�ially the self keyword
• When we �all self in a method, it refers to the obje�t itself
• It is used to a��ess the attributes and methods of the �lass
• self always needs to be in�luded in method definitions

. . .

8

This won't work as self is missing
class Students: # Class definition
 def know_answer(): # Method definition without self
 print(f"They know the answer to all questions.")

student = Students()
student.know_answer()

. . .

>Task: Try it yourself, what is the error?

Naming Classes
• Classes �an be named anything, but it is �ommon to use the plural form of their name

(e.g., People)
• CamelCase is used for �lass names, and snake_�ase is used for method and attribute

names (e.g., TallPeople)
• Classes are usually defined in a file with the same name as their �lass, but with a .py

extension

. . .

Question: Whi�h of the following is a good �lass name? smart_student, SmartStudent,
or SmartStudents

Class Attributes
• Class attributes are attributes that are shared by all �lass instan�es
• They are defined within the �lass but outside any methods

. . .

>Question: What do you think will happen here?

class Students: # Class definition
 smart = True # Class attribute

student_A = Students() # Object instantiation student_A
student_B = Students() # Object instantiation student_B

print(student_A.smart)
print(student_B.smart)

True
True

Instance Attributes
• Instan�e attributes are attributes unique to ea�h �lass instan�e
• They are defined within the __init__ method

9

class Student: # Class definition
 def __init__(self, name, is_smart): # Method for initalization
 self.name = name
 self.smart = is_smart
 def knows_answer(self): # Method to be called
 if self.smart:
 print(f"{self.name} knows the answer to the question.")
 else:
 print(f"{self.name} does not know the answer to the question.")

student = Student("Buddy",False) # Note, we don't need to call self here!
student.knows_answer()

Buddy does not know the answer to the question.

Inheritance
• Inheritan�e allows a �lass to inherit attributes and methods
• The �lass that inherits is �alled the sub�lass
• The �lass that is being inherited from is �alled the super�lass

. . .

 Tip

Don’t worry! It �an be quite mu�h right now. Hang in there and soon it will get
easier again!

Inheritance in Action

class Student: # Superclass
 def __init__(self, name):
 self.name = name
 def when_asked(self):
 pass

class SmartStudent(Student): # Subclass
 def when_asked(self):
 return f"{self.name} knows the answer!"

class LazyStudent(Student): # Subclass
 def when_asked(self):
 return f"{self.name} has to ask ChatGPT!"

>Task: Create two students. One is smart and the other one is lazy. Make sure that both
students rea�tion to a question is printed.

Encapsulation
• En�apsulation is the �on�ept of bundling data (attributes) and methods (behavior)

that operate on the data into a single unit (�lass)

10

• It is a key aspe�t of obje�t oriented programming (OOP)
• It helps in organizing �ode and �ontrolling a��ess

. . .

 Note

Fortunately, this is an introdu�tion to Python, so we won’t go into details of en�ap-
sulation.

The End
• Interested in more detail about �lasses and OOP?
• Che�k out a��ess modifiers, getters and setters
• They are definitely a bit more �ompli�ated for beginners…
• Though they are worth learning if you build �omplex programs

. . .

 Note

And that’s it for todays le�ture!
We now have �overed the basi�s of funtions and �lasses. We will �ontinue with
some slightly easier topi�s in the next le�tures.

Literature

Interesting Book to dive deeper
• Thomas, D., & Hunt, A. (2019). The pragmati� programmer, 20th anniversary edition:

Journey to mastery (Se�ond edition). Addison-Wesley.

. . .

 Tip

A fantasti� textbook to understand the prin�iples of modern software development
and how to �reate effe�tive software. Also available as a really good audiobook!

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.

11

../general/literature.qmd
../general/literature.qmd

	Quick Recap of the last Lecture
	Slicing
	Comparison Operators
	Control Structures

	Functions in Detail
	What is a Function?
	Some Built-in Functions already used
	Defining a Function
	Comment Functions
	Naming Functions (and Methods)
	Function Parameters
	Function Arguments
	Initializing Parameters
	Multiple Parameters
	Function Return Values
	Access return values
	Returning None
	Recursion

	Scope
	Function Scope
	Global Scope
	Global Keyword

	Classes
	Classes
	Self
	Naming Classes
	Class Attributes
	Instance Attributes
	Inheritance
	Inheritance in Action
	Encapsulation
	The End

	Literature
	Interesting Book to dive deeper

