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Quick Recap of the last Lecture

F-Strings
• F-strings provide a way to embed expressions inside string literals
• You �an in�lude expressions by pla�ing them inside �urly bra�es {}
• This makes it easier to in�lude dynami� �ontent

. . .

# Let's illustrate f-strings with a small example:
name = "Mr. Smith"
age = 30
height = 1.826549
print(f"My name is {name}, I'm {age} years old, and {height:.2f} meters
tall.")

My name is Mr. Smith, I'm 30 years old, and 1.83 meters tall.

. . .

 Tip

We used the :.2f format spe�ifier to round the number to two de�imal pla�es.

Variables and Data Types
• Python uses dynami� typing, i.e. the type is determined at runtime
• Basi� data types in Python are: int, float, str, bool
• Variables are �reated by assignment with the = operator

. . .

> Question: What are the types of y, z, w?

y = 2.5
z = "Hello"
w = True
print(f"y is of type {type(y).__name__}")
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print(f"z is of type {type(z).__name__}")
print(f"w is of type {type(w).__name__}")

y is of type float
z is of type str
w is of type bool

Arithmetic Operators
Addition
Subtra�tion
Multipli�ation
Division
Floor Division
Exponentiation
Modulo

+
-
*
/
//
**
%

Adds two numbers
Subtra�ts one number from another
Multiplies two numbers
Floating-point division
Integer division
Power of
Remainder of division

. . .

 Note

Note, that the / operator always returns a float, even if the division is even. Further-
more, the + operator �an be used to �on�atenate strings and that the * operator
�an be used to repeat strings.

Arithmetic Operators with Variables
• Additional operators �an update the value of a variable (new)
• We �an use +=, -=, *=, /=, //=, **=, %=

. . .

> Question: What is the value of x after the operations?
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x = 10
print(f"Initial value of x: {x}")
x += 5  # Equivalent to x = x + 5
print(f"After x += 5: {x}")
x *= 2  # Equivalent to x = x * 2
print(f"After x *= 2: {x}")
x %= 4  # Equivalent to x = x % 4
print(f"After x %= 4: {x}")

Initial value of x: 10
After x += 5: 15
After x *= 2: 30
After x %= 4: 2

Arithmetic Operators Task
> Task: Cal�ulate the final value step by step:

# Start with the following values
price = 100
discount_percent = 15
tax_rate = 0.08

# Your task:
# 1. Apply the discount to the price (price reduced by discount_percent)
# 2. Add tax to the discounted price
# 3. Round the final price to 2 decimal places
# Your code here

final_price = ?  # What should this be?

 Tip

You �an use the round() fun�tion to round a number to a spe�ifi� number of de�imal
pla�es. For example: round(3.14159, 2) returns 3.14.

Objects and Methods

Objects
• Obje�ts are instan�es of �lasses
• We will learn more about �lasses later in the �ourse
• In Python, virtually everything is an obje�t
• Common built-in obje�ts: integers, strings, lists, di�tionaries
• For now, think of obje�ts as a �olle�tion of data and methods

. . .

3



 Note

For most programming purposes, you �an treat everything in Python as an obje�t.
This means you �an assign all types to variables, pass them to fun�tions, and in
many �ases, �all methods on them.

Methods
• Methods are fun�tions that are �alled on an obje�t
• The syntax is object.method([arguments])
• Methods are spe�ifi� to the type of obje�t they’re �alled on
• They �an modify the obje�t or return information about it

. . .

 Tip

You �an use the dir() fun�tion to list all methods and attributes of an obje�t.

String Methods
Here are some �ommonly used string methods:

• upper(): Converts all �hara�ters in the string to upper�ase
• lower(): Converts all �hara�ters in the string to lower�ase
• title(): Converts first �hara�ter of ea�h word to upper�ase
• strip(): Removes leading and trailing whitespa�e
• replace(): Repla�es a substring with another substring
• find(): Finds first substring and returns its index
• count(): Counts the number of o��urren�es of a substring

String Methods in Action
> Question: What will be the output of the following �ode?

message = "Hello, World!"
print(message.upper())  # Converts to uppercase
print(message.lower())  # Converts to lowercase
print(message.title())  # Converts to title case
print(message.replace("World", "Python"))  # Replaces "World"
print(message.find("World"))  # Finds "World" and returns its index
print(message.count("o"))  # Counts the number of occurrences of "o"

HELLO, WORLD!
hello, world!
Hello, World!
Hello, Python!
7
2
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. . .

 Note

Note, how replace() does not modify the original string. Instead, it returns a new
string.

String Task
> Task: Dis�uss and implement the following task:

# Change the following message to get the desired output
message = " the snake programmer. "
# Your code here

output = "The Python Programmer."

. . .

 Tip

Remember, that these methods return a new string. The original string is not
modified.

String Task in Action

message = " the snake programmer. "
print(message.strip().title().replace("Snake", "Python"))

The Python Programmer.

. . .

 Tip

Here we �hained methods together to perform multiple operations after another
in one line.

Indexing and Slicing

Indexing
• We have used indexing to a��ess elements of a string last le�ture
• It allows you to a��ess elements of a sequen�e by position
• Positive indexing starts at 0 for the first element
• Negative indexing starts at −1 for the last element (new)

. . .
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string_to_index = "Hello, World!"
print(string_to_index[0])  # Accessing the first character
print(string_to_index[-1]) # Accessing the last character

H
!

Slicing
• Sli�ing allows you to extra�t a portion of a sequen�e
• Syntax: sequence[start:stop:step]
• start is the index of the first element to in�lude
• stop is the index of the first element to ex�lude
• step is the in�rement between indi�es (default is 1)
• The result is a new sequen�e �ontaining the extra�ted elements

. . .

string_to_slice = "Hello, World!"
print(string_to_slice[7:12])   # Accessing the last five characters from
the start
print(string_to_slice[-6:-1])  # Accessing the last five characters from
the end

World
World

Slicing Simplified
• If we omit start or stop, it will be repla�ed by the start or end of the sequen�e,

respe�tively
• If we omit step, it will be repla�ed by 1

. . .

string_to_slice = "Hello, World!"
print(string_to_slice[::2])   # Accessing every second character
print(string_to_slice[::-1])  # Accessing the string in reverse

Hlo ol!
!dlroW ,olleH

Slicing String Task
> Task: Dis�uss and implement the following task:

# Slice the following message to create the described output
message = "y6S0-teru89d23e'.n*ut"
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# Your code here

output = "Student"

. . .

 Tip

Remember, that these methods return a new string. The original string is not
modified.

Comparisons

Comparison Operators
• Comparison operators are used to �ompare two values
• The result of a �omparison is a boolean value (True or False)

. . .

> Question: What will be the output of the following �ode?

lower_number = 2; upper_number = 9
print(lower_number == upper_number) # Equality
print(lower_number != upper_number) # Inequality
print(lower_number > upper_number) # Greater than
print(lower_number < upper_number) # Less than
print(lower_number >= upper_number) # Greater than or equal to
print(lower_number <= upper_number) # Less than or equal to

False
True
False
True
False
True

Logical Operators
• Logi�al operators �ombine multiple �omparison operators
• Common logi�al operators: and, or, not

. . .

> Question: Whi�h of the following expressions is True?

lower_number = 2; middle_number = 5; upper_number = 9;
print(lower_number < middle_number and middle_number < upper_number) # and
print(lower_number < middle_number or middle_number > upper_number) # or
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print(lower_number == lower_number and not lower_number > middle_number) #
not

True
True
True

. . .

 Note

Note, that and and or are evaluated from left to right.

Membership Operators
• Used to �he�k if a value is present in a sequen�e
• Common membership operators: in, not in

. . .

> Question: Whi�h of these expressions is True?

an_apple = "apple"
print("a" in an_apple) # Check if "a" is in the string "apple"
print("pp" not in an_apple) # Check if "pp" is not in the string

True
False

. . .

 Note

Note, that in and not in �an be used for strings, lists, tuples, sets, and di�tionaries.
Don’t worry! We will learn about lists, tuples, sets, and di�tionaries later in the
�ourse.

Control Structures

Control Structures
• Used to �ontrol the flow of exe�ution in a program
• They �an be used to make de�isions and repeat �ode blo�ks
• if, elif, else, for, while, break, continue

. . .

> Question: What do you think ea�h of the above does?
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Indentation
• Indentation is �ru�ial in Python!
• It is used to indi�ate the blo�k of �ode that belongs to the stru�ture
• The standard indentation is 4 spa�es
• You �an use tabs, but you should be �areful with that

. . .

 Warning

Mixing tabs and spa�es �an �ause errors that are diffi�ult to debug. The Python style
guide (PEP 8) re�ommends using 4 spa�es per indentation level for �onsisten�y and
readability.

Conditional Statements

Conditional Statements
• They are used to exe�ute different blo�ks of �ode based on whether a �ondition is

true or false:
‣ if statements exe�ute a blo�k of �ode if a �ondition is True
‣ elif statements exe�ute a blo�k of �ode if the previous �ondition is False and the

�urrent �ondition is True
‣ else statements exe�ute a blo�k of �ode if the previous �onditions are False

. . .

 Tip

You �an use the and and or operators to �ombine multiple �onditions.

if-statements

condition = True
if condition:
    print("The condition is True!") # Code block to execute if condition is
True
print("This will always be printed!")

The condition is True!
This will always be printed!

. . .

condition = False
if condition:
    print("The condition is True!") # Code block to execute if condition is
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True
print("This will always be printed!")

This will always be printed!

. . .

 Tip

Writing if condition: is equivalent to if condition == True:

else-statements

condition = True
if condition:
    print("The condition is True!") # Code block to execute if condition is
True
else:
    print("The condition is False!") # Code block to execute if condition
is False

The condition is True!

. . .

condition = False
if condition:
    print("The condition is True!") # Code block to execute if condition is
True
else:
    print("The condition is False!") # Code block to execute if condition
is False

The condition is False!

elif-statements

temperature = 11
if temperature > 10:
    print("The temperature is greater than 10!")
elif temperature == 10:
    print("The temperature is equal to 10!")
else:
    print("The temperature is less than 10!")

The temperature is greater than 10!
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. . .

temperature = 10
if temperature > 10:
    print("The temperature is greater than 10!")
elif temperature == 10:
    print("The temperature is equal to 10!")
else:
    print("The temperature is less than 10!")

The temperature is equal to 10!

Comparisons and Conditional Statements
> Question: What will be the output of the following �ode?

name = "Harry"
profession = "wizard"
age = 16
if name == "Harry" and profession == "wizard" and age < 18:
    print("You are the chosen one still visiting school!")
elif name == "Harry" and profession == "wizard" and age >= 18:
    print("You are the chosen one and can start your journey!")
else:
    print("You are not the chosen one!")

You are the chosen one still visiting school!

Conditional Logic Task
> Task: Create a grade �lassifier:

# Given a numerical score, classify it into letter grades
score = 87  # You can test with different values

# Your task: Create if/elif/else statements that assign letter grades:
# 90-100: "A"
# 80-89: "B"
# 70-79: "C"
# 60-69: "D"
# Below 60: "F"
# Also handle invalid scores (negative or > 100)

# Your code here

print(f"Score: {score}, Grade: {grade}")
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Loops

Loops
• Loops allow you to exe�ute a blo�k of �ode repeatedly
• There are two types of loops: for and while
• for loops are used to iterate over a sequen�e (e.g., list, tuple, string)
• while loops exe�ute repeatedly until a �ondition is False

. . .

 Tip

Nested �ontrol stru�tures through further indentation are allowed as well, we thus
�an �hain multiple �ontrol stru�tures together.

for-loops

for i in range(5):
    print(i)

0
1
2
3
4

for i in range(0, 10, 2):
    print(i)

0
2
4
6
8

. . .

 Tip

The range() fun�tion �an take up to three arguments: start, stop, and step.

. . .

for-loops with Strings
> Question: What do you expe�t will be the output?
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fruit = "yellow banana"
for letter in fruit:
    print(letter)

y
e
l
l
o
w
 
b
a
n
a
n
a

while-loops

i = 0
while i < 5:
    print(i)
    i += 1

0
1
2
3
4

. . .

> Question: What �ould be an issue with poorly written while-loops?

while True
> Question: Anybody an idea what this �ode does?

i = 0
while True:
    if i % 10 == 0:
         print(i)
    if i > 100:
        break
    i += 1

0
10
20
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30
40
50
60
70
80
90
100

Importance of Control Flow
• Allows programs to make de�isions based on �onditions
• Enables repetition of �ode blo�ks
• Helps manage program �omplexity
• Improves effi�ien�y by exe�uting only ne�essary �ode
• Fa�ilitates �reation of dynami�, responsive programs

. . .

 Note

Without �ontrol flow, programs would exe�ute linearly from top to bottom, limiting
their fun�tionality and flexibility.

Loop Task
> Task: Implement the following task:

# Implement a while-loop that prints all even numbers between 0 and 100
excluding both 0 and 100.
number = 0
# Your code here

. . .

 Note

And that’s it for todays le�ture!
We now have �overed the basi�s on String methods, Comparisons, �onditional
statements and loops.

Literature

Interesting Books to start
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.
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. . .

 Tip

Nothing new here, but these are still great books to start with!

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.
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