
Lecture II - Control Structures for Your Code

Programming with Python

Dr. Tobias Vl�ć ek
Kühne Logisti�s University Hamburg - Fall 2025

Quick Recap of the last Lecture

F-Strings
• F-strings provide a way to embed expressions inside string literals
• You �an in�lude expressions by pla�ing them inside �urly bra�es {}
• This makes it easier to in�lude dynami� �ontent

. . .

Let's illustrate f-strings with a small example:
name = "Mr. Smith"
age = 30
height = 1.826549
print(f"My name is {name}, I'm {age} years old, and {height:.2f} meters
tall.")

My name is Mr. Smith, I'm 30 years old, and 1.83 meters tall.

. . .

 Tip

We used the :.2f format spe�ifier to round the number to two de�imal pla�es.

Variables and Data Types
• Python uses dynami� typing, i.e. the type is determined at runtime
• Basi� data types in Python are: int, float, str, bool
• Variables are �reated by assignment with the = operator

. . .

> Question: What are the types of y, z, w?

y = 2.5
z = "Hello"
w = True
print(f"y is of type {type(y).__name__}")

1

print(f"z is of type {type(z).__name__}")
print(f"w is of type {type(w).__name__}")

y is of type float
z is of type str
w is of type bool

Arithmetic Operators
Addition
Subtra�tion
Multipli�ation
Division
Floor Division
Exponentiation
Modulo

+
-
*
/
//
**
%

Adds two numbers
Subtra�ts one number from another
Multiplies two numbers
Floating-point division
Integer division
Power of
Remainder of division

. . .

 Note

Note, that the / operator always returns a float, even if the division is even. Further-
more, the + operator �an be used to �on�atenate strings and that the * operator
�an be used to repeat strings.

Arithmetic Operators with Variables
• Additional operators �an update the value of a variable (new)
• We �an use +=, -=, *=, /=, //=, **=, %=

. . .

> Question: What is the value of x after the operations?

2

x = 10
print(f"Initial value of x: {x}")
x += 5 # Equivalent to x = x + 5
print(f"After x += 5: {x}")
x *= 2 # Equivalent to x = x * 2
print(f"After x *= 2: {x}")
x %= 4 # Equivalent to x = x % 4
print(f"After x %= 4: {x}")

Initial value of x: 10
After x += 5: 15
After x *= 2: 30
After x %= 4: 2

Arithmetic Operators Task
> Task: Cal�ulate the final value step by step:

Start with the following values
price = 100
discount_percent = 15
tax_rate = 0.08

Your task:
1. Apply the discount to the price (price reduced by discount_percent)
2. Add tax to the discounted price
3. Round the final price to 2 decimal places
Your code here

final_price = ? # What should this be?

 Tip

You �an use the round() fun�tion to round a number to a spe�ifi� number of de�imal
pla�es. For example: round(3.14159, 2) returns 3.14.

Objects and Methods

Objects
• Obje�ts are instan�es of �lasses
• We will learn more about �lasses later in the �ourse
• In Python, virtually everything is an obje�t
• Common built-in obje�ts: integers, strings, lists, di�tionaries
• For now, think of obje�ts as a �olle�tion of data and methods

. . .

3

 Note

For most programming purposes, you �an treat everything in Python as an obje�t.
This means you �an assign all types to variables, pass them to fun�tions, and in
many �ases, �all methods on them.

Methods
• Methods are fun�tions that are �alled on an obje�t
• The syntax is object.method([arguments])
• Methods are spe�ifi� to the type of obje�t they’re �alled on
• They �an modify the obje�t or return information about it

. . .

 Tip

You �an use the dir() fun�tion to list all methods and attributes of an obje�t.

String Methods
Here are some �ommonly used string methods:

• upper(): Converts all �hara�ters in the string to upper�ase
• lower(): Converts all �hara�ters in the string to lower�ase
• title(): Converts first �hara�ter of ea�h word to upper�ase
• strip(): Removes leading and trailing whitespa�e
• replace(): Repla�es a substring with another substring
• find(): Finds first substring and returns its index
• count(): Counts the number of o��urren�es of a substring

String Methods in Action
> Question: What will be the output of the following �ode?

message = "Hello, World!"
print(message.upper()) # Converts to uppercase
print(message.lower()) # Converts to lowercase
print(message.title()) # Converts to title case
print(message.replace("World", "Python")) # Replaces "World"
print(message.find("World")) # Finds "World" and returns its index
print(message.count("o")) # Counts the number of occurrences of "o"

HELLO, WORLD!
hello, world!
Hello, World!
Hello, Python!
7
2

4

. . .

 Note

Note, how replace() does not modify the original string. Instead, it returns a new
string.

String Task
> Task: Dis�uss and implement the following task:

Change the following message to get the desired output
message = " the snake programmer. "
Your code here

output = "The Python Programmer."

. . .

 Tip

Remember, that these methods return a new string. The original string is not
modified.

String Task in Action

message = " the snake programmer. "
print(message.strip().title().replace("Snake", "Python"))

The Python Programmer.

. . .

 Tip

Here we �hained methods together to perform multiple operations after another
in one line.

Indexing and Slicing

Indexing
• We have used indexing to a��ess elements of a string last le�ture
• It allows you to a��ess elements of a sequen�e by position
• Positive indexing starts at 0 for the first element
• Negative indexing starts at −1 for the last element (new)

. . .

5

string_to_index = "Hello, World!"
print(string_to_index[0]) # Accessing the first character
print(string_to_index[-1]) # Accessing the last character

H
!

Slicing
• Sli�ing allows you to extra�t a portion of a sequen�e
• Syntax: sequence[start:stop:step]
• start is the index of the first element to in�lude
• stop is the index of the first element to ex�lude
• step is the in�rement between indi�es (default is 1)
• The result is a new sequen�e �ontaining the extra�ted elements

. . .

string_to_slice = "Hello, World!"
print(string_to_slice[7:12]) # Accessing the last five characters from
the start
print(string_to_slice[-6:-1]) # Accessing the last five characters from
the end

World
World

Slicing Simplified
• If we omit start or stop, it will be repla�ed by the start or end of the sequen�e,

respe�tively
• If we omit step, it will be repla�ed by 1

. . .

string_to_slice = "Hello, World!"
print(string_to_slice[::2]) # Accessing every second character
print(string_to_slice[::-1]) # Accessing the string in reverse

Hlo ol!
!dlroW ,olleH

Slicing String Task
> Task: Dis�uss and implement the following task:

Slice the following message to create the described output
message = "y6S0-teru89d23e'.n*ut"

6

Your code here

output = "Student"

. . .

 Tip

Remember, that these methods return a new string. The original string is not
modified.

Comparisons

Comparison Operators
• Comparison operators are used to �ompare two values
• The result of a �omparison is a boolean value (True or False)

. . .

> Question: What will be the output of the following �ode?

lower_number = 2; upper_number = 9
print(lower_number == upper_number) # Equality
print(lower_number != upper_number) # Inequality
print(lower_number > upper_number) # Greater than
print(lower_number < upper_number) # Less than
print(lower_number >= upper_number) # Greater than or equal to
print(lower_number <= upper_number) # Less than or equal to

False
True
False
True
False
True

Logical Operators
• Logi�al operators �ombine multiple �omparison operators
• Common logi�al operators: and, or, not

. . .

> Question: Whi�h of the following expressions is True?

lower_number = 2; middle_number = 5; upper_number = 9;
print(lower_number < middle_number and middle_number < upper_number) # and
print(lower_number < middle_number or middle_number > upper_number) # or

7

print(lower_number == lower_number and not lower_number > middle_number) #
not

True
True
True

. . .

 Note

Note, that and and or are evaluated from left to right.

Membership Operators
• Used to �he�k if a value is present in a sequen�e
• Common membership operators: in, not in

. . .

> Question: Whi�h of these expressions is True?

an_apple = "apple"
print("a" in an_apple) # Check if "a" is in the string "apple"
print("pp" not in an_apple) # Check if "pp" is not in the string

True
False

. . .

 Note

Note, that in and not in �an be used for strings, lists, tuples, sets, and di�tionaries.
Don’t worry! We will learn about lists, tuples, sets, and di�tionaries later in the
�ourse.

Control Structures

Control Structures
• Used to �ontrol the flow of exe�ution in a program
• They �an be used to make de�isions and repeat �ode blo�ks
• if, elif, else, for, while, break, continue

. . .

> Question: What do you think ea�h of the above does?

8

Indentation
• Indentation is �ru�ial in Python!
• It is used to indi�ate the blo�k of �ode that belongs to the stru�ture
• The standard indentation is 4 spa�es
• You �an use tabs, but you should be �areful with that

. . .

 Warning

Mixing tabs and spa�es �an �ause errors that are diffi�ult to debug. The Python style
guide (PEP 8) re�ommends using 4 spa�es per indentation level for �onsisten�y and
readability.

Conditional Statements

Conditional Statements
• They are used to exe�ute different blo�ks of �ode based on whether a �ondition is

true or false:
‣ if statements exe�ute a blo�k of �ode if a �ondition is True
‣ elif statements exe�ute a blo�k of �ode if the previous �ondition is False and the

�urrent �ondition is True
‣ else statements exe�ute a blo�k of �ode if the previous �onditions are False

. . .

 Tip

You �an use the and and or operators to �ombine multiple �onditions.

if-statements

condition = True
if condition:
 print("The condition is True!") # Code block to execute if condition is
True
print("This will always be printed!")

The condition is True!
This will always be printed!

. . .

condition = False
if condition:
 print("The condition is True!") # Code block to execute if condition is

9

True
print("This will always be printed!")

This will always be printed!

. . .

 Tip

Writing if condition: is equivalent to if condition == True:

else-statements

condition = True
if condition:
 print("The condition is True!") # Code block to execute if condition is
True
else:
 print("The condition is False!") # Code block to execute if condition
is False

The condition is True!

. . .

condition = False
if condition:
 print("The condition is True!") # Code block to execute if condition is
True
else:
 print("The condition is False!") # Code block to execute if condition
is False

The condition is False!

elif-statements

temperature = 11
if temperature > 10:
 print("The temperature is greater than 10!")
elif temperature == 10:
 print("The temperature is equal to 10!")
else:
 print("The temperature is less than 10!")

The temperature is greater than 10!

10

. . .

temperature = 10
if temperature > 10:
 print("The temperature is greater than 10!")
elif temperature == 10:
 print("The temperature is equal to 10!")
else:
 print("The temperature is less than 10!")

The temperature is equal to 10!

Comparisons and Conditional Statements
> Question: What will be the output of the following �ode?

name = "Harry"
profession = "wizard"
age = 16
if name == "Harry" and profession == "wizard" and age < 18:
 print("You are the chosen one still visiting school!")
elif name == "Harry" and profession == "wizard" and age >= 18:
 print("You are the chosen one and can start your journey!")
else:
 print("You are not the chosen one!")

You are the chosen one still visiting school!

Conditional Logic Task
> Task: Create a grade �lassifier:

Given a numerical score, classify it into letter grades
score = 87 # You can test with different values

Your task: Create if/elif/else statements that assign letter grades:
90-100: "A"
80-89: "B"
70-79: "C"
60-69: "D"
Below 60: "F"
Also handle invalid scores (negative or > 100)

Your code here

print(f"Score: {score}, Grade: {grade}")

11

Loops

Loops
• Loops allow you to exe�ute a blo�k of �ode repeatedly
• There are two types of loops: for and while
• for loops are used to iterate over a sequen�e (e.g., list, tuple, string)
• while loops exe�ute repeatedly until a �ondition is False

. . .

 Tip

Nested �ontrol stru�tures through further indentation are allowed as well, we thus
�an �hain multiple �ontrol stru�tures together.

for-loops

for i in range(5):
 print(i)

0
1
2
3
4

for i in range(0, 10, 2):
 print(i)

0
2
4
6
8

. . .

 Tip

The range() fun�tion �an take up to three arguments: start, stop, and step.

. . .

for-loops with Strings
> Question: What do you expe�t will be the output?

12

fruit = "yellow banana"
for letter in fruit:
 print(letter)

y
e
l
l
o
w

b
a
n
a
n
a

while-loops

i = 0
while i < 5:
 print(i)
 i += 1

0
1
2
3
4

. . .

> Question: What �ould be an issue with poorly written while-loops?

while True
> Question: Anybody an idea what this �ode does?

i = 0
while True:
 if i % 10 == 0:
 print(i)
 if i > 100:
 break
 i += 1

0
10
20

13

30
40
50
60
70
80
90
100

Importance of Control Flow
• Allows programs to make de�isions based on �onditions
• Enables repetition of �ode blo�ks
• Helps manage program �omplexity
• Improves effi�ien�y by exe�uting only ne�essary �ode
• Fa�ilitates �reation of dynami�, responsive programs

. . .

 Note

Without �ontrol flow, programs would exe�ute linearly from top to bottom, limiting
their fun�tionality and flexibility.

Loop Task
> Task: Implement the following task:

Implement a while-loop that prints all even numbers between 0 and 100
excluding both 0 and 100.
number = 0
Your code here

. . .

 Note

And that’s it for todays le�ture!
We now have �overed the basi�s on String methods, Comparisons, �onditional
statements and loops.

Literature

Interesting Books to start
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.

14

https://greenteapress.com/wp/think-python-3rd-edition/

. . .

 Tip

Nothing new here, but these are still great books to start with!

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.

15

../general/literature.qmd
../general/literature.qmd

	Quick Recap of the last Lecture
	F-Strings
	Variables and Data Types
	Arithmetic Operators
	Arithmetic Operators with Variables
	Arithmetic Operators Task

	Objects and Methods
	Objects
	Methods
	String Methods
	String Methods in Action
	String Task
	String Task in Action

	Indexing and Slicing
	Indexing
	Slicing
	Slicing Simplified
	Slicing String Task

	Comparisons
	Comparison Operators
	Logical Operators
	Membership Operators

	Control Structures
	Control Structures
	Indentation

	Conditional Statements
	Conditional Statements
	if-statements
	else-statements
	elif-statements
	Comparisons and Conditional Statements
	Conditional Logic Task

	Loops
	Loops
	for-loops
	for-loops with Strings
	while-loops
	while True
	Importance of Control Flow
	Loop Task

	Literature
	Interesting Books to start

