
Lecture I - Introduction

Programming with Python

Dr. Tobias Vl�ć ek
Kühne Logisti�s University Hamburg - Fall 2025

About this Course

About me
• Field: Optimizing and simulating �omplex systems
• Languages: of �hoi�e: Julia, Python and Rust
• Interest: Modelling, Simulations, Ma�hine Learning
• Tea�hing: OR, Algorithms, and Programming
• Conta�t: vl�ek@beyondsimulations.�om

. . .

 Tip

I really appre�iate a�tive parti�ipation and intera�tion!

Course Outline
• Part I: Introdu�tion to Programming with Python
• Part II: Data S�ien�e Tools with Python
• Part III: Programming Proje�ts

Participation
• Prequisite for �ourse Management S�ien�e (taught by me)
• Try a�tively parti�ipating in this �ourse
• You will find it mu�h (!) easier to follow later
• Materials will be provided in the KLU portal
• Slides are hosted at beyondsimulations.github.io/Introdu�tion-to-Python

Teaching
• Le�ture: Presentation of tools and �on�epts, based on small examples and �ode

snippets
• Tutorial: Hands-on examples to be solved in groups
• Diffi�ulty: Diffi�ult at first, but gradually easier

Passing the Course
• Pass/fail �ourse
• 75% attendan�e required for passing the �ourse

1

mailto:vlcek@beyondsimulations.com
https://beyondsimulations.github.io/Introduction-to-Python/

• 2 assignments and 1 little proje�t
• You will be given programming exer�ises to solve
• You �an group up (3 students) and work together
• Ea�h student group submits one solution

Solution
• Provide a �ode solution to the problem (.py files)
• Code files need to be exe�utable
• Detailed explanations of your �ode should be provided
• Use �omments or do�strings in your �ode
• Provide a general (verbal) introdu�tion to ea�h problem

. . .

 Tip

I’d en�ourage you to start and submit your solution early

Difficulty of the Course
• We’ll �over the basi�s of programming (in Python) at first
• This is similar to learning a new foreign language
• First, you have to get used to the language and learn words
• Later, you’ll be able to apply it and see results
• Similar to learning a language: Pra�ti�e, pra�ti�e, pra�ti�e!

What to expect
• Some investment in the beginning to see the return later
• You �an ask questions and get support anytime
• After �ompletion, you will be able to read �ode
• and write your own program using Python
• That’s quite something!

Goals of the Course
• Essential �on�epts and tools of modern programming
• Automated solutions for re�urrent tasks
• Algorithm-based solutions of �omplex problems
• Usage of AI in a spe�ifi� �ontext

Python as Language
• Origins: Con�eived in late 1980s as a tea�hing and s�ripting language
• Simple Syntax: Python’s syntax is straightforward and easy to learn
• Versatility: Used in web development, data analysis, artifi�ial intelligen�e, and more
• Community Support: A large �ommunity of users and extensive do�umentation

2

Artificial Intelligence

How to use AI
• We base our assessment on the KLU �lassifi�ation:
‣ Level 1: Pause: Use of AI defined by the edu�ator

• You are allowed to use AI (Claude, ChatGPT, Mistral …)
• Use them to support understanding
• A �ourse �hatbot is available on the learning website
• It is designed to guide your problem-solving pro�ess

. . .

 Warning

But you should not simply use them to repla�e your learning.

How to use the Chatbot
• Just �li�k the �hatbot bubble on the website
• The �hat will open an you �an ask your questions
• It is programmed by us and uses Mistral AI as ba�kend
• Ask your question as spe�ifi� as possible
• This ensures enough �ontext for the model
• We �an see aggregated logs, but �annot identify you
• Please don’t provide personal information

Why learn programming?

Analytics
Photo by Choong Deng Xiang on Unsplash

Research
Photo by National Can�er Institute on Unsplash

Visualization
Photo by Clay Banks on Unsplash

Finance
Photo by Ishant Mishra on Unsplash

Logistics
Photo by Denys Nevozhai on Unsplash

How to learn programming

My Recommendation
1. Be present: Attend the le�ture and parti�ipate

3

2. Put in some work: Repeat le�ture notes and try to understand the examples yourself
3. Do �oding: Run �ode examples on your own, play around, google, modify, and solve

problems on your own

. . .

 Tip

Great resour�es to start are books and small �hallenges. You �an find a list of
book re�ommendations at the end of the le�ture. Small �hallenges to solve �an for
example be found on Codewars.

Don’t give up!
• Programming is problem solving, don’t get frustrated!
• Expe�t to stret�h your �omfort zone

Learning Path
• The learning path �an be quite steep!
• First of all help ea�h other!
• Try to find help in le�ture materials and books, the Python do�umentation, and online

(e.g. Google, ChatGPT, Sta�kOverflow, …)
• In �ase you get frustrated, read the following helpful blog post about the �hallenges

on medium.�om
• In �ase you find errors or typos, please report them via e-mail to me

Setting up Python

Installing an IDE
• In this �ourse, we will use Zed as our IDE
• Download and install it from https://zed.dev/
• It is available for Windows, Ma� and Linux
• It is free to use, lightweight and fast
• Has AI support built-in, whi�h we will use later

What is an IDE?
• Integrated Development Environment = appli�ation
• It allows you to write, run and debug �ode s�ripts
• Other IDEs in�lude for example:
‣ PyCharm from JetBrains
‣ Visual Studio Code from Mi�rosoft

Installing Python with uv
• We will use uv to install and manage Python versions
• It works on Windows, Ma� and Linux
• It helps us to manage pa�kages and virtual environments

4

https://www.codewars.com/
https://medium.com/sololearn/why-learning-to-code-is-soooo-hard-3c2372e9d12c
https://medium.com/sololearn/why-learning-to-code-is-soooo-hard-3c2372e9d12c
vlcek@beyondsimulations.com
https://zed.dev/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/

• Now, we all go here and install uv and Python

Python on iPads
• Although you �an run Python s�ripts from on your iPad, it is not re�ommended for

the �ourse
• Nonetheless, you �ould use Pythonista
• It works lo�ally on your iPad and �an run most s�ripts

. . .

 Caution

Not all pa�kages available in Python are available in Pythonista, thus you might
need a �omputer to solve �ertain problems.

Your first code

Hello, my name is …!
Task: Open the dire�tory you �reated for the �ourse and �reate a new file �alled
hello.py with the following �ode:

This is a comment in Python
print("Hello, my name is [YOUR NAME HERE]!")

Hello, my name is [YOUR NAME HERE]!

. . .

Run it by exe�uting the following �ommand in your terminal:

uv run python hello.py

. . .

Hello, World in a Message
Task: Create a new file �alled message_world.py file. Assign the string "Hello, World!"
to a variable �alled message and print the variable.

. . .

• Use the equals sign (=)
• Variable name goes on the left
• Value to be assigned goes on the right

. . .

5

general/uv.qmd
https://apps.apple.com/de/app/pythonista-3/id1085978097

Here we assign the string "Hello, World!" to variable message and print
it
message = "Hello, World!"
print(message)

Hello, World!

Hello, World in Parentheses
We �an also mix " and ' in a string, if we are �onsistent:

This code works
message = 'I shout "Hello, World!"'
print(message)

I shout "Hello, World!"

. . .

This code does not!
message = 'I shout 'Hello, World!""
print(message)

. . .

Try it yourself! What does happen, if you try to run it?

First Errors
SyntaxError: invalid syntax

• The �ode is not valid Python syntax
• Likely the most �ommon error that you will en�ounter!
• Happens when you make a mistake, e.g., illegal �hara�ter, missing a �olon, parenthe-

ses or quotations
• You �an fix this by �orre�ting the �ode and re-running
• In the le�ture you will en�ounter many more errors!

Program

What is a Program?
• Sequen�e of instru�tions telling a �omputer what to do
• Written in a language the �omputer �an understand
• Basi� operations in most languages:
‣ Input: Data from keyboard, file, network, sensors, et�.
‣ Output: Display data, save it, send over network, et�.

6

‣ Pro�essing: Perform �al�ulations, analyze data, make de�isions, find patterns, et�.

Key concepts
• Key �on�epts in most languages:
‣ Variables: Store and manipulate data
‣ Conditional exe�ution: Che�k and exe�ute a��ordingly
‣ Loops: Perform a�tions repeatedly
‣ Fun�tions: Group instru�tions for reusability

. . .

 Note

We will �over these �on�epts in more detail later in the �ourse.

How Python executes code
• Python is an interpreted language
• The sour�e �ode is exe�uted line by line
• The interpreter �he�ks the syntax and exe�utes the �ode
• This is in �ontrast to �ompiled languages, where the �ode is �ompiled into ma�hine

�ode before exe�ution

Hello again, World!
Let’s go ba�k to our first program:

Our first program
message = "Hello, World!"
print(message)

. . .

• Comment: In the first line we define a �omment with #
• Variable: In the se�ond we define a variable message
• Fun�tion: In the third line we �all a fun�tion print

Don’t worry!
• Already �onfused? Don’t worry about it for now!
• We’ll learn more about variables and fun�tions later

Python’s Syntax

The Zen of Python
• Python’s name originally �omes from Monty Python
• Style is based on a philosophy �alled Zen of Python
• Colle�tion of 19 statements with general prin�iples

7

. . .

Task: Try this �ode in Python:

Try this code in Python to see the Zen of Python
import this

Variables
• A variable in Python is a name that points to a value
• Created by using the assignment operator =
• Python does not require a de�laration of variable types

a = 2 # Variable a assigned the value 2
b = "Time" # Variable b assigned the value "Time"
c = print # Variable c assigned the print function
c(b) # Now we can call the print function with c

Time

. . .

But there are �ertain rules to variable names!

Variable Naming Conventions
• Must start with a letter or unders�ore _
• Can �ontain letters, numbers and unders�ores
• Names are �ase sensitive, e.g., a and A are different!
• Cannot be a reserved word, e.g., for, if, def, et�
• Good names are short and meaningful for humans!

. . .

Question: Whi�h of the following fulfill these �onditions?
a, _duration, 1x, time_left, 1_minute, oneWorld, xy4792

Functions
• Fun�tions are named blo�ks of �ode
• Can take arguments function([arguments])
• Can return results or None

. . .

Print is such a function
print("Hello, World!") # It takes an argument and prints it to the console
print("Hello","World!", sep=", ") # It can also take multiple arguments

8

Hello, World!
Hello, World!

. . .

 Note

We will �over fun�tions in more detail later in the �ourse.

Values and Types

What are Values and Types?
• Value: Fundamental thing that a program manipulates
‣ In Python, values are either numbers or strings

• Type: Type of a value
‣ Determines what operations �an be performed on it
‣ type() is a fun�tion that returns the type of a value
‣ Takes one argument and returns its type as string

Strings
Ba�k to our example of “Hello, World!”

We define the variable message and assign it the value "Hello, World!"
message = "Hello, World!"

We save its type in another variable called message_type
message_type = type(message)

We print the value of our new variable
print(f"{message} is a {message_type}")

Hello, World! is a <class 'str'>

. . .

Result: “Hello, World” is a string - in short ‘str’.

. . .

But what about the f”?

Formated Strings
• f-strings are strings that start with f
• They �ontain expressions, e.g., variables, in bra�es
• Evaluated at run time and inserted into the string

. . .

9

 Note

In older �ode bases, f strings were not available. Here, interpolation �ould be done
as shown below with print() and .format(). But this method is less �on�ise and
arguably less readable.

. . .

print("{} is a {}".format(message, message_type))

Hello, World! is a <class 'str'>

Specifying Formatted Strings
• We �an further spe�ify their format with {<to_print>:<width>.<precision>f}
• width �an be a number spe�ifying the output width
• <, ^, > �an be used before the width to align the text
• precision �an be used to spe�ify the de�imals
• .f �an be used to format floats

x = "hello"
print(f"{x:<10} has {len(x):>10.2f} characters.")

hello has 5.00 characters.

Expressions
• Produ�e a value when evaluated
• Can be used as part of larger expressions or statements
• Statements are expressions that don’t produ�e a value
• Examples: arithmeti� operations, fun�tion �alls, variables

x = 1 # Statement that assigns the value 3 to x
y = x + 2 # Expression on the right side assigned to a variable y
print(f"Great, the result is {y}")

Great, the result is 3

A step back: What is a String?
• Remember: “Hello, World” is a string - in short ‘str’
• A string is a sequen�e of �hara�ters en�losed in quotes
• Examples: "Hello", 'World', "123", '1World23'

hello = "Hello"
world = 'World!'

10

print(hello,world,sep=", ") # We can specify the separator with the
argument sep

Hello, World!

. . .

 Note

Strings are immutable, we �an’t �hange �hara�ters in them on�e �reated.

String Operations
• But we �an also do mu�h more with strings!
• String �on�atenation, indexing, sli�ing, length, et�.

two_strings = "Hello" + ", " + "World!" # String concatenation
print(two_strings)

Hello, World!

. . .

print(two_strings[0]) # Indexing starts at zero!

H

. . .

print(len(two_strings)) # With len we can find the length of our string

13

. . .

print("--x--"*3) # We can also repeat strings

--x----x----x--

Booleans
• Booleans represent two values: True and False
• Internally they are represented as 1 and 0, respe�tively
• They are used for logi�al operations and �ontrol flow
• E.g.: if, while, for, elif, `else

11

. . .

x = True
y = False
print(x)
print(type(y))

True
<class 'bool'>

. . .

> More on them in our next le�ture!

Integers and Floats
• Integers are whole numbers, e.g.: 1, -3, 0 or 100
• Floats are de�imal numbers, e.g.: -4.78, 0.1 or 1.23e2
• Bit size is not spe�ified (e.g.: 64 bits) in Python!

. . .

x = 1; y = 1.2864e2 # We can separate multiple operations in one line with
semicolons
print(f"{x} is of type {type(x)}, {y} is of type {type(y)}")

1 is of type <class 'int'>, 128.64 is of type <class 'float'>

. . .

 Warning

The interpreter will automati�ally �onvert booleans to integers to floats when
ne�essary, but not the other way around!

First Functions and Operators

Arithmetic operators

addition = 1 + 2; print(f"Result: addition is {addition}")
substraction = 1 - 2; print(f"Result: substraction is
{substraction}")
multiplication = 3 * 4; print(f"Result: multiplication is
{multiplication}")
division = 7 / 4; print(f"Result: division is {division}")
floor_division = 7 // 4; print(f"Result: floor_division is
{floor_division}")
exponentiation = 9 ** 0.5; print(f"Result: exponentiation is

12

{exponentiation}")
modulo = 10 % 3; print(f"Result: modulo is {modulo}")

Result: addition is 3
Result: substraction is -1
Result: multiplication is 12
Result: division is 1.75
Result: floor_division is 1
Result: exponentiation is 3.0
Result: modulo is 1

Precedence
• Operators are the same as in most other languages
• Can be �ombined with ea�h other and variables
• Normal rules of pre�eden�e apply

. . .

Operator precedence works as on paper
combined_operation = 2 + 3 * 4
print(f"2 + 3 * 4 = {combined_operation}")

2 + 3 * 4 = 14

. . .

Parentheses change precedence as expected
parentheses_operation = (2 + 3) * 4
print(f"(2 + 3) * 4 = {parentheses_operation}")

(2 + 3) * 4 = 20

The input() Function
• Used to get user input as string from the �onsole
• Syntax: input([userprompt])
• Displays optional prompt and waits for user input

. . .

name = input("What's your name? ")
print(f"Hello, {name}!")

. . .

13

! Important

The fun�tion always returns the input as string!

Input in Action
Task: Solve the following task:

TODO: Ask the user for their age and print a compliment

. . .

Solution

age = int(input("How old are you? "))
print(f"You look great for {age}!")

Type Conversion
Use type �onversion for other data types

1. Integer: int(input())
2. Float: float(input())
3. Boolean: bool(input())
4. String: str(input())

. . .

Converting to Integer
age = int(input("Enter your age: "))
next_year = age + 1
print(f"Next year, you'll be {next_year}")

The round() Function

Hence, we can use the int() function to convert a float into an int
soon_int = 1.789
print(f"{soon_int} converted to {int(soon_int)} of type
{type(int(soon_int))}")

1.789 converted to 1 of type <class 'int'>

. . .

We can also use `round()` to round a float to an int
soon_int = 1.789
print(f"{soon_int} converted to {round(soon_int)} of type
{type(round(soon_int))}")

14

1.789 converted to 2 of type <class 'int'>

. . .

Or to a float with a certain number of decimals
no_int = 1.789
print(f"{no_int} converted to {round(no_int,1)} of type
{type(round(no_int,1))}")

1.789 converted to 1.8 of type <class 'float'>

Questions?
. . .

 Note

That’s it for todays le�ture!
We now have �overed the basi�s on the Python syntax, variables, and data types.

Literature

Interesting Books to start
• Downey, A. B. (2024). Think Python: How to think like a �omputer s�ientist (Third

edition). O’Reilly. Link to free online version
• Elter, S. (2021). S�hrödinger programmiert Python: Das etwas andere Fa�hbu�h (1.

Auflage). Rheinwerk Verlag.

. . .

 Note

Think Python is a great book to start with. It’s available online for free here.
S�hrödinger Programmiert Python is a great alternative for German students, as it
is a very playful introdu�tion to programming with lots of examples.

. . .

For more interesting literature to learn more about Python, take a look at the literature
list of this �ourse.

15

https://greenteapress.com/wp/think-python-3rd-edition/
https://greenteapress.com/wp/think-python-3rd-edition/
../general/literature.qmd
../general/literature.qmd

	About this Course
	About me
	Course Outline
	Participation
	Teaching
	Passing the Course
	Solution
	Difficulty of the Course
	What to expect
	Goals of the Course
	Python as Language

	Artificial Intelligence
	How to use AI
	How to use the Chatbot

	Why learn programming?
	Analytics
	Research
	Visualization
	Finance
	Logistics

	How to learn programming
	My Recommendation
	Don't give up!
	Learning Path

	Setting up Python
	Installing an IDE
	What is an IDE?
	Installing Python with uv
	Python on iPads

	Your first code
	Hello, my name is …!
	Hello, World in a Message
	Hello, World in Parentheses
	First Errors

	Program
	What is a Program?
	Key concepts
	How Python executes code
	Hello again, World!
	Don't worry!

	Python's Syntax
	The Zen of Python
	Variables
	Variable Naming Conventions
	Functions

	Values and Types
	What are Values and Types?
	Strings
	Formated Strings
	Specifying Formatted Strings
	Expressions
	A step back: What is a String?
	String Operations
	Booleans
	Integers and Floats

	First Functions and Operators
	Arithmetic operators
	Precedence
	The input() Function
	Input in Action
	Type Conversion
	The round() Function
	Questions?

	Literature
	Interesting Books to start

