
Tutorial V - Production Planning in Breweries

Applied Optimization with Julia

1. Modelling the CLSP

Load the necessary packages and data
Implement the CLSP from the lecture in Julia. Before we start, let’s load the necessary
packages and data.

using JuMP, HiGHS
using CSV
using DelimitedFiles
using DataFrames
using Plots
using StatsPlots
import Pkg; Pkg.add("PlotlyBase")
plotly() # This will create interactive plots later on

 Tip

If you haven’t installed the packages yet, you can do so by running using
Pkg first and then Pkg.add("JuMP"), Pkg.add("HiGHS"), Pkg.add("DataFrames"),
Pkg.add("Plots"), and Pkg.add("StatsPlots").

Load the data
Now, let’s load the data. The weekly demand in bottles 𝑑𝑖,𝑡, the available time at the
bottling plant in hours 𝑎𝑡, the time required to bottle each beer in hours 𝑏𝑖, and the
setup time in hours 𝑔𝑖 are provided as CSV files.

Get the directory of the current file
file_directory = "$(@__DIR__)/data"

Load the data about the available time at the bottling plant
availableTime = CSV.read("$file_directory/availabletime.csv", DataFrame)
println("Number of periods: $(nrow(availableTime))")
println("First 5 rows of available time per period:")
println(availableTime[1:5, :])

Number of periods: 27
First 5 rows of available time per period:
5×2 DataFrame

1

 Row │ period available_capacity
 │ String7 Int64
─────┼─────────────────────────────
 1 │ week_01 168
 2 │ week_02 168
 3 │ week_03 168
 4 │ week_04 168
 5 │ week_05 48

Load the data about the bottling time for each beer
bottlingTime = CSV.read("$file_directory/bottlingtime.csv", DataFrame)
println("Number of beers: $(nrow(bottlingTime))")
println("Bottling time per beer:")
println(bottlingTime)

Number of beers: 6
Bottling time per beer:
6×2 DataFrame
 Row │ beer_type bottling_time
 │ String15 Float64
─────┼───────────────────────────
 1 │ Pilsener 0.00222
 2 │ Blonde_Ale 0.00111
 3 │ Amber_Ale 0.00139
 4 │ Brown_Ale 0.00222
 5 │ Porter 0.00167
 6 │ Stout 0.00111

Load the data about the setup time for each beer
setupTime = CSV.read("$file_directory/setuptime.csv", DataFrame)
println("Setup time per beer:")
println(setupTime)

Setup time per beer:
6×2 DataFrame
 Row │ beer_type setup_time
 │ String15 Int64
─────┼────────────────────────
 1 │ Pilsener 10
 2 │ Blonde_Ale 11
 3 │ Amber_Ale 8
 4 │ Brown_Ale 8
 5 │ Porter 11
 6 │ Stout 9

Load the data about the weekly demand for each beer
demandCustomers = CSV.read("$file_directory/demand.csv", DataFrame)
println("First 5 rows of demand per beer:")
println(demandCustomers[1:5, :])

2

First 5 rows of demand per beer:
5×3 DataFrame
 Row │ beer_type period demand
 │ String15 String7 Int64
─────┼─────────────────────────────
 1 │ Pilsener week_01 3853
 2 │ Blonde_Ale week_01 8372
 3 │ Amber_Ale week_01 16822
 4 │ Brown_Ale week_01 13880
 5 │ Porter week_01 10642

Define the parameters
Consider in your implementation, that each hour of setup is associated with a cost
of 1000 Euros, and the inventory holding cost for unsold bottles at the end of each
period is 0.1 Euro per bottle. Implement both parameters for the cost of setup and the
inventory holding cost in the model. Call them setupHourCosts and warehouseCosts.

YOUR CODE BELOW

Next, you need to prepare the given data for the model. Create a dictionary
for the available time, bottling time, and setup time. Call them dictAvailableTime,
dictBottlingTime, and dictSetupTime.

Prepare the data for the model
dictDemand = Dict((row.beer_type,row.period) => row.demand for row in
eachrow(demandCustomers))

YOUR CODE BELOW

Validate your solution
@assert length(dictAvailableTime) == nrow(availableTime) "Available time
dictionary should have same length as input data"
@assert length(dictBottlingTime) == nrow(bottlingTime) "Bottling time
dictionary should have same length as input data"
@assert length(dictSetupTime) == nrow(setupTime) "Setup time dictionary
should have same length as input data"

Check that all values are positive
@assert all(v -> v > 0, values(dictAvailableTime)) "All available time
values must be positive"
@assert all(v -> v > 0, values(dictBottlingTime)) "All bottling time values
must be positive"
@assert all(v -> v > 0, values(dictSetupTime)) "All setup time values must
be positive"

Check that dictionaries contain all expected keys
@assert all(p -> haskey(dictAvailableTime, p), availableTime.period)
"Missing periods in available time dictionary"

3

@assert all(b -> haskey(dictBottlingTime, b), bottlingTime.beer_type)
"Missing beer types in bottling time dictionary"
@assert all(b -> haskey(dictSetupTime, b), setupTime.beer_type) "Missing
beer types in setup time dictionary"

Define the model instance
Next, we define the model instance for the CLSP.

Prepare the model instance
lotsizeModel = Model(HiGHS.Optimizer)
set_attribute(lotsizeModel, "presolve", "on")
set_time_limit_sec(lotsizeModel, 60.0)

Define the variables
Now, create your variables. Please name them productBottled for the binary variable,
productQuantity for the production quantity and WarehouseStockPeriodEnd for the
warehouse stock at the end of each period. We will use these names later in the code
to plot the results.

YOUR CODE BELOW

Validate your solution
Check if variables exist in the model
@assert haskey(lotsizeModel.obj_dict, :productBottled) "productBottled
variable not found in model"
@assert haskey(lotsizeModel.obj_dict, :productQuantity) "productQuantity
variable not found in model"
@assert haskey(lotsizeModel.obj_dict, :WarehouseStockPeriodEnd)
"WarehouseStockPeriodEnd variable not found in model"

Check variable dimensions
@assert length(productBottled) == length(dictBottlingTime) *
length(dictAvailableTime) "Incorrect dimensions for productBottled"
@assert length(productQuantity) == length(dictBottlingTime) *
length(dictAvailableTime) "Incorrect dimensions for productQuantity"
@assert length(WarehouseStockPeriodEnd) == length(dictBottlingTime) *
length(dictAvailableTime) "Incorrect dimensions for
WarehouseStockPeriodEnd"

Check variable types
@assert all(is_binary, productBottled) "productBottled must be binary
variables"
@assert all(is_integer, productQuantity) == false "productQuantity must be
continuous variables"
@assert all(is_integer, WarehouseStockPeriodEnd) == false
"WarehouseStockPeriodEnd must be continuous variables"

4

Define the objective function
Next, define the objective function.

YOUR CODE BELOW

Validate your solution
Check if the model has an objective
@assert objective_function(lotsizeModel) !== nothing "Model must have an
objective function"

Check if it's a minimization problem
@assert objective_sense(lotsizeModel) == MOI.MIN_SENSE "Objective should be
minimization"

Check if the objective function contains both cost components
obj_expr = objective_function(lotsizeModel)
@assert contains(string(obj_expr), "productBottled") "Objective must
include setup costs (productBottled)"
@assert contains(string(obj_expr), "WarehouseStockPeriodEnd") "Objective
must include warehouse costs (WarehouseStockPeriodEnd)"

Define the constraints
Now, we need to define all necessary constraints for the model. Start with the demand/
inventory balance constraint.

 Tip

The first period is special, as it does not have a previous period. Furthermore, we
are working with strings as variable references, thus we cannot use t-1 directly as
in the lecture. To address this, we could collect and sort all keys and then use their
indices to address the previous period. For example, all_periods[t-1] would then
be the previous period, if we index t just as a range from 2:length(all_periods).

Get the first period and all periods
first_period = first(sort(collect(keys(dictAvailableTime))))
all_periods = sort(collect(keys(dictAvailableTime)))

With these, we can now define the demand/inventory balance constraint. As this is the
first constraint and might be a bit tricky, the solution is already given below.

Inventory balance constraints for periods after first period
@constraint(lotsizeModel,
 demandBalance[i=keys(dictBottlingTime), t=2:length(all_periods)],
 WarehouseStockPeriodEnd[i,all_periods[t-1]] +
productQuantity[i,all_periods[t]] -

5

WarehouseStockPeriodEnd[i,all_periods[t]] == dictDemand[i,all_periods[t]]
)

Next, we need to ensure that we setup the production for a beer type only if we bottle
the type at least once.

YOUR CODE BELOW

Last, we need to define the constraint that limits the production quantity to the number
of bottles that can be bottled within the available time.

YOUR CODE BELOW

Solve the model
Finally, implement the solve statement for your model instance.

YOUR CODE BELOW

Validate your solution
@assert 600000 <= objective_value(lotsizeModel) <= 700000 "Objective value
should be between 600,000 and 700,000"

Now, unfortunately we cannot assert the value of the objective function perfectly here
as we have to abort the computation due to the time limit and everybody is likely
getting different results. The solution for the first task will likely be in the range of
600,000 to 700,000. If your model is solved within seconds, your formulation is not
correct.

Create the plots
The following code creates production and warehouse plots for you. Use it to verify
and visualize your solution in the following tasks.

 Note

The creation of the dataframes and the plots is implemented inside of a function,
as we will need to use it multiple times in the following tasks.

Create the production results
function create_production_results()
 # Create a DataFrame to store the results
 productionResults = DataFrame(
 period = String[],
 product = String[],

6

 productBottled = Bool[],
 productQuantity=Int[],
 WarehouseStockPeriodEnd=Int[]
)

 # Populate the DataFrame with the results
 for i in keys(dictSetupTime)
 for t in keys(dictAvailableTime)
 push!(
 productionResults,(
 period = t,
 product = i,
 productBottled = value(productBottled[i,t])>0.5 ? true :
false,
 productQuantity = ceil(Int,value(productQuantity[i,t])),
 WarehouseStockPeriodEnd =
ceil(Int,value(WarehouseStockPeriodEnd[i,t])),
)
)
 end
 end

 sort!(productionResults,[:period, :product])
 return productionResults
end

Create the production plot
function create_production_plot(productionResults)
 p = groupedbar(
 productionResults.period,
 productionResults.productQuantity,
 group=productionResults.product,
 ylabel="Production Quantity (Bottles)",
 xlabel="Period",
 title="Production Schedule by Beer Type",
 size=(1200,600),
 palette = :Set3,
 legend=:outertopright,
 xrotation = 45,
 legendtitle="Beer Type",
 bar_width=0.7,
 grid=false,
 dpi=300
)
 return p
end

Create the warehouse stock plot
function create_warehouse_plot(productionResults)
 p = groupedbar(
 productionResults.period,
 productionResults.WarehouseStockPeriodEnd,
 group=productionResults.product,
 ylabel="Warehouse Stock",

7

 xlabel="Period",
 title="Warehouse Stock",
 size=(1200,600),
 palette = :Set3,
 legend=:outertopright,
 xrotation = 45,
 legendtitle="Beer Type",
 bar_width=0.7,
 grid=false,
 dpi=300
)
 return p
end

The following code creates the production plot.

productionResults = create_production_results()
p = create_production_plot(productionResults)

The following code creates the warehouse stock plot.

productionResults = create_production_results()
p = create_warehouse_plot(productionResults)

Calculate the setup and inventory costs
Next, we calculate the setup and inventory costs for each period and store them in a
DataFrame. This should also work for you, if you followed the previous name instruc:
tions.

Calculate costs per period
function create_cost_results()
 costResults = DataFrame(
 period = String[],
 setup_costs = Float64[],
 inventory_costs = Float64[]
)

 for t in sort(collect(keys(dictAvailableTime)))
 # Calculate setup costs for this period
 period_setup_costs = sum(
 setupHourCosts * dictSetupTime[i] * value(productBottled[i,t])
 for i in keys(dictBottlingTime)
)

 # Calculate inventory costs for this period
 period_inventory_costs = sum(
 warehouseCosts * value(WarehouseStockPeriodEnd[i,t])
 for i in keys(dictBottlingTime)
)

8

 push!(costResults, (
 period = t,
 setup_costs = period_setup_costs,
 inventory_costs = period_inventory_costs
))
 end

 # Stack the cost columns
 stacked_costs = stack(costResults, [:setup_costs, :inventory_costs],
 variable_name="Cost_Type", value_name="Cost")
 return stacked_costs
end

Create the cost plot
function create_cost_plot(stacked_costs)
 p = groupedbar(
 stacked_costs.period,
 stacked_costs.Cost,
 group=stacked_costs.Cost_Type,
 ylabel="Costs (€)",
 xlabel="Period",
 title="Setup and Inventory Costs per Period",
 size=(1200,600),
 palette=:Set2,
 legend=:outertopright,
 xrotation=45,
 legendtitle="Cost Type",
 bar_width=0.7,
 grid=false,
 dpi=300
)
 return p
end

The following code calls the setup and inventory costs plot.

stacked_costs = create_cost_results()
p = create_cost_plot(stacked_costs)

2. Initial Warehouse Stock
The model currently sets the initial warehouse stock levels without any restrictions.
Modify your model to incorporate an initial stock for all types of beer of zero at the
beginning of the initial planning period.

To solve this task, you can simply extend the previous model by these additional
constraints in the cell below. Afterwards, you can re:run the optimization.

YOUR CODE BELOW

9

Validate your solution
@assert 700000 <= objective_value(lotsizeModel) <= 760000 "Objective value
should be between 700,000 and 760,000"

The objective value should now be higher, as the solution space is smaller than before
and the initial stock is zero for all beer types. You can check the plots for the production
and warehouse stock to verify this.

productionResults = create_production_results()
p = create_production_plot(productionResults)

productionResults = create_production_results()
p = create_warehouse_plot(productionResults)

stacked_costs = create_cost_results()
p = create_cost_plot(stacked_costs)

3. Scheduled Repair
Unfortunately, the bottling plant has to undergo maintenance in periods "week_10" and
"week_11". Extend your model to prevent any production in those two periods.

Again, to solve this task, you can simply extend the previous model by these additional
constraints in the cell below. Afterwards, you can re:run the optimization.

YOUR CODE BELOW

Validate your solution
@assert 760000 <= objective_value(lotsizeModel) <= 800000 "Objective value
should be between 760,000 and 800,000"

Again, the objective value should be higher, because the solution space is smaller. You
can check the plots for the production and warehouse stock to verify whether the
production is zero in the maintenance periods.

productionResults = create_production_results()
p = create_production_plot(productionResults)

productionResults = create_production_results()
p = create_warehouse_plot(productionResults)

stacked_costs = create_cost_results()
p = create_cost_plot(stacked_costs)

10

4. Production Schedule Analysis
Analyze the production schedule outlined in section 2 of this tutorial. Is the workload
distributed evenly across all time periods? Provide a rationale for your assessment.

Please answer in the following cell. Note, that #= and =# are a comment delimiter for
multiline comments. You can write whatever you want between them and the code will
not be executed.

YOUR REASONING BELOW
#=

=#

Based on the production data from the final period, calculate the ending inventory
levels for each type of beer. Discuss any significant findings. Compute the ending
inventory levels for each type of beer in the following cell. You can name the DataFrame
however you want.

YOUR CODE BELOW

5. Biannual Bottling Strategy
Reflecting on a scenario where the company schedules its bottling operations biannu:
ally using the current method: identify and discuss potential pitfalls of this strategy.

Offer at least one actionable suggestion for enhancing the efficiency or effectiveness
of the production planning process.

Your answer goes here.

YOUR ANSWER BELOW
#=

=#

Solutions
You will likely find solutions to most exercises online. However, I strongly encourage
you to work on these exercises independently without searching explicitly for the exact
answers to the exercises. Understanding someone else’s solution is very different from
developing your own. Use the lecture notes and try to solve the exercises on your own.
This approach will significantly enhance your learning and problem:solving skills.

11

Remember, the goal is not just to complete the exercises, but to understand the
concepts and improve your programming abilities. If you encounter difficulties, review
the lecture materials, experiment with different approaches, and don’t hesitate to ask
for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub
repository, but we will also quickly go over them in next week’s tutorial. To access the
solutions, click on the Github button on the lower right and search for the folder with
today’s lecture and tutorial. Alternatively, you can ask ChatGPT or Claude to explain
them to you. But please remember, the goal is not just to complete the exercises, but
to understand the concepts and improve your programming abilities.

Bibliography

12

	1. Modelling the CLSP
	Load the necessary packages and data
	Load the data
	Define the parameters
	Define the model instance
	Define the variables
	Define the objective function
	Define the constraints
	Solve the model
	Create the plots
	Calculate the setup and inventory costs

	2. Initial Warehouse Stock
	3. Scheduled Repair
	4. Production Schedule Analysis
	5. Biannual Bottling Strategy
	Solutions
	Bibliography

