Tutorial IV.V - Modelling the Transportation Prob-
lem with JuMP

Applied Optimization with Julia

Introduction

Welcome to this tutorial on the transportation problem using JuMP! As always, don’t
worry if you'’re new to optimization - we’ll walk through everything step by step using
a real-world example.

Imagine you’re running a solar panel distribution company. You have several ware-
houses (suppliers) and need to ship solar panels to various solar farms (customers).
Your goal is to minimize the total cost of transportation while meeting all customer
demands.

By the end of this tutorial, you'll be able to:

1. Understand what a transportation problem is
2. Set up a transportation problem using JuMP
3. Solve the problem and interpret the results

Let’s start by loading the necessary packages:

using JuMP, HiGHS
using DataFrames, CSV

Section 1 - Understanding the Transportation Problem
The transportation problem involves:

« Suppliers (our warehouses)

Customers (solar farms)

Transportation costs between each supplier and customer
Supply available at each warehouse

» Demand required by each solar farm

Our goal is to decide how many solar panels to ship from each warehouse to each solar
farm to minimize total cost.

Let’s set up our problem:

» The revenue from each truckload of solar panels is 11000

 The variable costs from each truckload of solar panels is 6300

» The available panels at the supplier are given in the file available-panels.csv
» The requested panels at the customer are given in the file panel-demand.csv

 The transportation costs between suppliers and customers are given in the file
cost.csv

1 Note

We can use the csv.read function to load the data from a CSV file into a DataFrame.
If we want to access the directory of the current file, we can again use the
convinient @__DIR__ macro.

Fixed parameters
revenue = 11000 # Revenue per truckload of solar panels
varCosts = 6300 # Variable costs per truckload

Load data from CSV files

available = CSV.read("$(@__DIR__)/data/available-panels.csv", DataFrame)
requested = CSV.read("$(@__DIR__)/data/panel-demand.csv", DataFrame)
travelCosts = CSV.read("$(@__DIR__)/data/cost.csv", DataFrame)

println("Data loaded successfully!")

Data loaded successfully!

Tip

Make sure, that you donwload the datasets from Github and store them in a folder
called data in the same directory as the script you are currently working on. You
can find the data sets in the GitHub repository for this tutorial. Note, that you don’t
need to preprocess the data in any way. This tutorial we will focus on the modeling
part.

Now, we can check out the data by printing the first few rows of each DataFrame. We
can use the first function to get the first few rows of a DataFrame.

println("Available panels:")
first(available,5)

Available panels:

println("Requested panels:")
first(requested,5)

Requested panels:

println("Travel costs:")
first(travelCosts,5)

Travel costs:

Exercise 1.1 - Understand the Data
Take a moment to look at the data. Can you answer these questions?

1. How many warehouses do we have? Save the number in a variable called
num_warehouses.
2. How many solar farms are we supplying? Save the number in a variable called

num_solar_farms.

YOUR ANSWERS BELOW
Hint: Use the ‘nrow()‘ function to count rows

Test your understanding
@assert num_warehouses == nrow(available)
@assert num_solar_farms == nrow(requested)

println("Great job! Here are the answers:")
println("Number of warehouses: ", num_warehouses)
println("Number of solar farms: ", num_solar_farms)

Section 2 - Using dictionaries to store the data

Now, DataFrames are not a very convenient format for our purposes. We have several
options now on how to deal with these data sets. As our suppliers and customers are
given names, it might be useful to convert the data into dictionaries. Dictionaries are a
great data structure that allow us to store key-value pairs, where the keys are unique
identifiers and the values are the data associated with those keys. By using dictionaries,
we can easily access and modify the data associated with a specific key.

available_dict = Dict(
available.supplier .=> available.truckloads_available
)
requested_dict = Dict(
requested.solar_farm .=> requested.truckload_demand
)
travelCosts_dict = Dict(
(row.supplier,row.solar_farm) => row.costs
for row in eachrow(travelCosts)

Tip

You can use the Dict function to create a dictionary from two arrays or DataFrames.
For example: Dict(keys .=> values) will create a dictionary where the keys are the
elements of the keys array and the values are the elements of the values array.

Now, let us check out the dictionaries. We can use the first function to get the first
few key-value pairs of a dictionary.

println("Available panels:")
first(available_dict,5)

Available panels:

5-element VectorsPair{String7, Int64%::

"a_13" => 145
"a_17" => 181
"a_26" => 405
"a_90" => 479
"a_67" => 430

println("Travel costs:")
first(travelCosts_dict,5)

Travel costs:

5-element Vector{Pair§TuplesString7, String7%, Inté433:
("a_33", "b_450") => 1903
("a_99", "b_340") => 1749
("a_74", "b_249") => 7016
("a_11", "b_278") => 5788
("a_40", "b_35") => 11369

Remember, we can also access the value associated with a specific key in a dictionary
by using the key inside square brackets. For example: available_dict["a_1"] will return
the value associated with the key "a_1".

print("Value associated with supplier 'a_1': ")

available_dict["a_1"]

Value associated with supplier 'a_1':

478

Our travel costs dictionary is a bit more complex, as it is dictionary with tuples as keys.
We can access the value associated with a specific supplier and customer by using two
keys inside square brackets. For example: travelCosts_dict[("a_1","b_1")] will return
the value associated with the keys ("a_1","b_1").

print("Value associated with supplier 'a_1' and customer 'b_1': ")
travelCosts_dict[("a_1","b_1")]

Value associated with supplier 'a_1' and customer 'b_1':

8052

We can also extract the keys and values of a dictionary using the keys and values
functions, as shown in the previous tutorial.

println("Keys of the travel costs dictionary:")
first(keys(travelCosts_dict),5)

Keys of the travel costs dictionary:

5-element VectorsTuplesString7, String733:
("a_33", "b_450")
("a_99", "b_340")
("a_74", "b_249")
("a_11", "b_278")
("a_40", "b_35")

println("Values of the travel costs dictionary:")
first(values(travelCosts_dict),5)

Values of the travel costs dictionary:

5-element VectorsInté64i:
19063
1749
7016
5788
11369

Dictionaries make it a lot easier to access the data later on, as we can use the keys
to directly access the desired value in our model. This will be useful when we want to
define the constraints later on.

Section 3 - The model instance
After the preprocessing and data loading, we now can create the model instance with
the HiGHS optimizer.

Exercise 3.1 - Creating the model instance
From the last tutorial, you should know how to do this. Create a model instance called
transport_model and set the optimizer to HiGHS.

YOUR CODE BELOW

Test your answer
@assert typeof(transport_model) == JuMP.Model
println("Model instance created successfully!")

Section 4 - Defining the model

Define the variables

We can now define the variables of our model. We need to define a variable for each
supplier and customer pair. As before, we can use the @variable macro to define the
variables. The syntax is @variable(model, varname[index1,index2] >= @), where model
is the modelinstance, varname is the name of the variable, and index1 and index2 are the
indices of the variable. We can use vectors as input for the indices, but we could also
use the keys of the dictionaries. In the following code block we mixed both options, to
show you that it is possible.

Define variable

@variable(
transport_model,
X[available.supplier,keys(requested_dict)] >= ©

Define the objective

Next, we can define the objective of our model. We want to maximize the profit, which
is the revenue minus the variable costs and the transportation costs. As before, we can
use the @objective macro to define the objective. The syntaxis @objective(model, Max,
expression), where model is the model instance, Max indicates that we want to maximize
the expression, and expression is the expression we want to maximize.

@objective(transport_model, Max,
sum((revenue-varCosts-travelCosts_dict[(i,j)]1) * X[i,j]
for i in keys(available_dict), j in keys(requested_dict))

Define the constraints

We can now define the constraints of our model. We need to ensure that the supply
from each supplier is enough to cover the demand of each customer. We can use
the @constraint macro to define the constraints. The syntax is @constraint(model,
expression), where model is the model instance and expression is the expression we
want to constrain.

To illustrate the use of dictionaries, we will again use the keys of the dictionaries to
define the constraints in the following code block.

@constraint(transport_model,
restrictAvailable[i in keys(available_dict)],
sum(X[i,j] for j in keys(requested_dict)) <= available_dict[i]

Naturally, we could also use the vectors with the names from the DataFrames to
define the constraints or we could also just work with ranges from the beginning,
e.g.1:1length(available.supplier) and 1:length(requested.solar_farm). Working with
names is often more convenient, though.

@constraint(transport_model,
restrictDemand[j in requested.solar_farm],
sum(X[i,j] for i in available.supplier) <= requested_dict[j]

And that’s it! We have now defined the model and can start optimizing.

Section 5 - Solving the model

Exercise 5.1 - Start optimization
Start the optimization as usual by calling the optimize! function on the model instance.

YOUR CODE BELOW

Test your answer
@assert termination_status(transport_model) == MOI.OPTIMAL
println("Model optimized successfully!")

Now, we can access the values of the variables at the optimal solution. But remember,
we defined the variables with the keys of the dictionaries, so we need to convert the
result back to a DataFrame. Calling the variable itself will just show the structure of the
variable, not the values.

first(X,5)

Thus, we need to use the value function to extract the values from the variable.

transport_values = value. (X)

The result is a DenseAxisArraysFloaté4,2,...% with index sets. To convert it to a
DataFrame, we just need to iterate over the keys dictionaries and store the values in a
new DataFrame. As we are not interested in values which are zero, we can skip those.

First, we need to initialize an empty DataFrame with the correct column names.

transport_df = DataFrame(
supplier = [],
solar_farm = [],
truckloads []

Then, we can iterate over the keys of the dictionaries and store the values in the
DataFrame if they are greater than zero.

for i in keys(available_dict)
for j in keys(requested_dict)
if transport_values[i,j] > ©
push! (transport_df, (
supplier = i,
solar_farm = j
truckloads = transport_values[i,j]

)

?

end
end
end

Finally, we can print the first few rows of the transportation plan to check if it looks
correct.

println("Begining of the transportation plan:")
first(transport_df,5)

1 Note

Although the above code looks rather complicated, it is essentially just iterating
over the keys of the dictionaries and storing the values in a new DataFrame. This
is @ common pattern in optimization, as we often want to convert the result of
an optimization problem into a more convenient format for reporting or further
processing.

Conclusion

In this tutorial, we have learned how to model and solve the transportation problem
using JUMP. We have also learned how to use dictionaries to store and access the data,
which will be useful for more complex models. If you have any questions, feel free to
ask me via email!

Solutions

You will likely find solutions to most exercises online. However, | strongly encourage
you to work on these exercises independently without searching explicitly for the exact
answers to the exercises. Understanding someone else’s solution is very different from
developing your own. Use the lecture notes and try to solve the exercises on your own.
This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the
concepts and improve your programming abilities. If you encounter difficulties, review
the lecture materials, experiment with different approaches, and don’t hesitate to ask
for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub
repository, but we will also quickly go over them in next week’s tutorial. To access the
solutions, click on the Github button on the lower right and search for the folder with
today’s lecture and tutorial. Alternatively, you can ask ChatGPT or Claude to explain
them to you. But please remember, the goal is not just to complete the exercises, but
to understand the concepts and improve your programming abilities.

Bibliography

	Introduction
	Section 1 - Understanding the Transportation Problem
	Exercise 1.1 - Understand the Data

	Section 2 - Using dictionaries to store the data
	Section 3 - The model instance
	Exercise 3.1 - Creating the model instance

	Section 4 - Defining the model
	Define the variables
	Define the objective
	Define the constraints

	Section 5 - Solving the model
	Exercise 5.1 - Start optimization

	Conclusion
	Solutions
	Bibliography

