
Tutorial IV.III - Constraints in JuMP

Applied Optimization with Julia

Introduction
Welcome to this tutorial on constraints in JuMP! In this lesson, we’ll explore how to add
rules (constraints) to our optimization problems.

By the end of this tutorial, you’ll be able to: 1. Create simple constraints for your opti&
mization problems 2. Use containers (like arrays) to manage multiple similar constraints
3. Create more complex constraints based on conditions

Let’s start by loading the necessary packages:

using JuMP, HiGHS

Now, let’s create a model that we’ll use throughout this tutorial:

another_model = Model(HiGHS.Optimizer)
println("Great! We've created a new optimization model.")

Section 1 - Objective Functions with Container Variables
Defining objective functions with variables in containers allows for scalable and
dynamic model formulations. First, we need a container with variables for the objective
function. For example:

@variable(modelName, variableName[1:3] >= 0)

Now, we can define an objective function with the container. For example:

@objective(modelName, Max, sum(variableName[i] for i in 1:3))

Exercise 1.1 - Define arrays
Scenario: Imagine you’re optimizing the production of 8 different products in a factory.
Each product has a different profit margin, and you want to maximize total profit.

Define an array of variables and an objective function for another_model. The variables
should be called profits and have a range from 1:8. It has a lower bound of 0. The
objective should be a Maximization of the sum of all profits.

YOUR CODE BELOW

1

Test your answer
@assert length(profits) == 8 && all(lower_bound(profits[i]) == 0 for i in
1:8)
@assert typeof(objective_function(another_model)) == AffExpr
println("Objective function with container variables defined
successfully!")

Section 2 - Constraints within Containers
Defining constraints within containers allows for structured and easily manageable
models. This is especially important when models become larger! To define a constraint
within a container, we can do, for example, the following:

@constraint(modelName,
 constraintName[i in 1:3],
 variableName[i] <= 100
)

This would create a constraint called constraintName for each i & thus 1,2, and 3 & where
variableName[1], variableName[2], and variableName[3] are restricted to be maximally
100.

Exercise 2.1 - Define constraints
Continuing our factory scenario: Each product has a maximum daily production capac&
ity due to machine limitations.

Define constraints called maxProfit using an array of variables. The logic: Each profit
defined in the previous task should be less than or equal to 12.

YOUR CODE BELOW

Test your answer
@assert all(is_valid(another_model, maxProfit[i]) for i in 1:8)
println("Constraints within containers defined successfully!")

Section 3 - Implementing Conditional Constraints
Conditional constraints are added to the model based on certain conditions, allowing
for dynamic and flexible model formulations. To define a constraint within a container
under conditions, we can do the following:

@constraint(modelName,
 constraintName[i in 1:3; i <= 2],
 variableName[i] <= 50
)

2

This would create a constraint called constraintName for each i & thus 1,2, and
3 & where variableName[1], variableName[2] are restricted to be maximally 50 and
variableName[3] was not restricted.

Exercise 3.1 - Add a conditional constraints
Scenario extension: The first 4 products are new and have limited market demand.

Add a conditional constraint smallProfit to the previous model. Condition: Only the
first 4 variables profit have to be lower or equalthan 5.

YOUR CODE BELOW

Test your answer
@assert all(is_valid(another_model, smallProfit[i]) for i in 1:4)
println("Conditional constraint implemented successfully!")
println("Checking successful implementation.")
optimize!(another_model)
status = termination_status(another_model)
@assert status == MOI.OPTIMAL "Sorry, something didn't work out as the
model status is $status"
@assert objective_value(another_model) ≈ 68 atol=1e-4 "Although you have an
optimal solution,
 the should be 68 not $(objective_value(another_model)). Is the model
correct?"
println("Model components validated successfully!")

Visualization of Results
Let’s visualize our optimal solution:

using Plots
Assuming the model has been solved!!!
optimal_profits = value.(profits)

bar(1:8, optimal_profits,
 title="Optimal Production Levels",
 xlabel="Product",
 ylabel="Profit",
 legend=false)

Conclusion
Congratulations! You’ve completed the tutorial on advanced handling of objective
functions and constraints in JuMP. You’ve learned how to define objective functions
and constraints using container variables. Continue to the next file to learn more.

Solutions
You will likely find solutions to most exercises online. However, I strongly encourage
you to work on these exercises independently without searching explicitly for the exact

3

answers to the exercises. Understanding someone else’s solution is very different from
developing your own. Use the lecture notes and try to solve the exercises on your own.
This approach will significantly enhance your learning and problem&solving skills.

Remember, the goal is not just to complete the exercises, but to understand the
concepts and improve your programming abilities. If you encounter difficulties, review
the lecture materials, experiment with different approaches, and don’t hesitate to ask
for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub
repository, but we will also quickly go over them in next week’s tutorial. To access the
solutions, click on the Github button on the lower right and search for the folder with
today’s lecture and tutorial. Alternatively, you can ask ChatGPT or Claude to explain
them to you. But please remember, the goal is not just to complete the exercises, but
to understand the concepts and improve your programming abilities.

Bibliography

4

	Introduction
	Section 1 - Objective Functions with Container Variables
	Exercise 1.1 - Define arrays

	Section 2 - Constraints within Containers
	Exercise 2.1 - Define constraints
	Section 3 - Implementing Conditional Constraints
	Exercise 3.1 - Add a conditional constraints

	Visualization of Results
	Conclusion
	Solutions
	Bibliography

