
Tutorial IV.II - Variables and Bounds in JuMP

Applied Optimization with Julia

Introduction
Welcome to this beginner-friendly tutorial on variables and bounds in JuMP! In this
lesson, we’ll explore different types of variables and how to set limits (or bounds) on
them. Don’t worry if you’re new to optimization - we’ll explain everything step by step
using real-world examples.

Follow the instructions, write your code in the designated code blocks, and confirm
your understanding with @assert statements. Make sure to have the JuMP package
installed to follow this tutorial.

Let’s start by loading the JuMP package:

using JuMP

Now, let’s create a model that we’ll use throughout this tutorial:

model = Model()
println("Great! We've created a new optimization model.")

Great! We've created a new optimization model.

Section 1 - Understanding Different Types of Variables
In optimization problems, we often need to represent different kinds of decisions. JuMP
allows us to use three main types of variables:

1. Continuous variables: These can take any real value within a range. Example: The
amount of water in a reservoir (can be any number, like 3.7 liters).

2. Integer variables: These can only be whole numbers. Example: The number of cars
produced in a factory (we can’t produce half a car!).

3. Binary variables: These can only be 0 or 1. Example: Whether to build a new store in
a location (yes = 1, no = 0).

Let’s see how to create each type:

@variable(model, variableName)

This defines a continuous variable without any bound.

1

@variable(model, 0 <= variableName2 <= 1)
has_lower_bound(variableName2) && has_upper_bound(variableName2)

This defines a continuous variable in an interval.

@variable(model, variableName3, Bin)
is_binary(variableName3)

This defines a binary variable.

@variable(model, 0 <= variableName4, Int)
is_integer(variableName4)

This defines an integer variable.

 Note

Note that you will have to change model and variableName according to your
instance.

Exercise 1.1 - Create Variables
Now it’s your turn! Create three variables:

1. A continuous variable called water_amount
2. An integer variable called cars_produced
3. A binary variable called build_store

YOUR CODE BELOW
Hint: Use the @variable macro three times, once for each variable

Test your answer
@assert typeof(water_amount) == VariableRef && !is_integer(water_amount)
&& !is_binary(water_amount)
@assert typeof(cars_produced) == VariableRef && is_integer(cars_produced)
@assert typeof(build_store) == VariableRef && is_binary(build_store)
println("Excellent work! You've successfully created continuous, integer,
and binary variables.")

Section 2 - Creating Variables in Containers
When we have many similar variables, it’s helpful to group them together. JuMP allows
us to use containers like arrays and matrices for this purpose. For example:

@variable(model, variableName5[1:20], Bin)

2

20-element Vector{VariableRef}:
 variableName5[1]
 variableName5[2]
 variableName5[3]
 variableName5[4]
 variableName5[5]
 variableName5[6]
 variableName5[7]
 variableName5[8]
 variableName5[9]
 variableName5[10]
 variableName5[11]
 variableName5[12]
 variableName5[13]
 variableName5[14]
 variableName5[15]
 variableName5[16]
 variableName5[17]
 variableName5[18]
 variableName5[19]
 variableName5[20]

This would create a container with 20 variables. To create a set based on a range, we
could do:

new_range = 1:100
@variable(model, variableName6[i in new_range] >= 0)

1-dimensional DenseAxisArray{VariableRef,1,...} with index sets:
 Dimension 1, 1:100
And data, a 100-element Vector{VariableRef}:
 variableName6[1]
 variableName6[2]
 variableName6[3]
 variableName6[4]
 variableName6[5]
 variableName6[6]
 variableName6[7]
 variableName6[8]
 variableName6[9]
 variableName6[10]
 variableName6[11]
 variableName6[12]
 variableName6[13]
 ⋮
 variableName6[89]
 variableName6[90]
 variableName6[91]
 variableName6[92]
 variableName6[93]
 variableName6[94]
 variableName6[95]

3

 variableName6[96]
 variableName6[97]
 variableName6[98]
 variableName6[99]
 variableName6[100]

This would create a container with 100 continuous variables larger than 0. For a
container with multiple dimensions:

@variable(model, variableName7[1:30, 1:30])

30×30 Matrix{VariableRef}:
 variableName7[1,1] variableName7[1,2] … variableName7[1,30]
 variableName7[2,1] variableName7[2,2] variableName7[2,30]
 variableName7[3,1] variableName7[3,2] variableName7[3,30]
 variableName7[4,1] variableName7[4,2] variableName7[4,30]
 variableName7[5,1] variableName7[5,2] variableName7[5,30]
 variableName7[6,1] variableName7[6,2] … variableName7[6,30]
 variableName7[7,1] variableName7[7,2] variableName7[7,30]
 variableName7[8,1] variableName7[8,2] variableName7[8,30]
 variableName7[9,1] variableName7[9,2] variableName7[9,30]
 variableName7[10,1] variableName7[10,2] variableName7[10,30]
 variableName7[11,1] variableName7[11,2] … variableName7[11,30]
 variableName7[12,1] variableName7[12,2] variableName7[12,30]
 variableName7[13,1] variableName7[13,2] variableName7[13,30]
 ⋮ ⋱
 variableName7[19,1] variableName7[19,2] variableName7[19,30]
 variableName7[20,1] variableName7[20,2] variableName7[20,30]
 variableName7[21,1] variableName7[21,2] … variableName7[21,30]
 variableName7[22,1] variableName7[22,2] variableName7[22,30]
 variableName7[23,1] variableName7[23,2] variableName7[23,30]
 variableName7[24,1] variableName7[24,2] variableName7[24,30]
 variableName7[25,1] variableName7[25,2] variableName7[25,30]
 variableName7[26,1] variableName7[26,2] … variableName7[26,30]
 variableName7[27,1] variableName7[27,2] variableName7[27,30]
 variableName7[28,1] variableName7[28,2] variableName7[28,30]
 variableName7[29,1] variableName7[29,2] variableName7[29,30]
 variableName7[30,1] variableName7[30,2] variableName7[30,30]

This would create a container with a matrix of continuous variables without any bound.
Note that you will have to change model and variableName according to your instance.

Exercise 2.1 - Create an Array
Imagine you’re planning production for a week. Create an array daily_production with
7 non-negative variables, one for each day of the week.

YOUR CODE BELOW

4

Test your answer
@assert length(daily_production) == 7
@assert all(lower_bound(daily_production[i]) == 0 for i in 1:7)
println("Great job! You've created an array of 7 non-negative variables for
daily production.")

Exercise 2.2 - Create a Matrix of Variables
Now, imagine you’re deciding whether to stock 4 different products in 3 different
stores. Create a 3x4 matrix of binary variables called stock_decision.

YOUR CODE BELOW

Test your answer
@assert size(stock_decision) == (3, 4)
@assert all(is_binary(stock_decision[i,j]) for i in 1:3, j in 1:4)
println("Excellent! You've created a 3x4 matrix of binary variables for
stocking decisions.")

Section 3 - Setting Bounds on Variables
Often, we know that a variable can’t go below or above certain values. We can set these
limits (called bounds) when we create the variable.

For example, if a factory can produce between 100 and 500 units:

@variable(model, 100 <= production <= 500)

Or if we know a percentage must be between 0 and 100:

@variable(model, 0 <= percentage <= 100)

Exercise 3.1 - Set Bounds on a Variable
Create a variable temperature that represents the temperature setting on a thermostat.
It should be between 0 and 37 degrees.

YOUR CODE BELOW

Test your answer
@assert lower_bound(temperature) == 0
@assert upper_bound(temperature) == 37
println("Well done! You've created a variable for temperature with
appropriate bounds.")

5

Conclusion
Fantastic! You’ve completed the tutorial on advanced variables in JuMP. You’ve learned
how to create variables in containers, manage different types of variables, and work
with indexed variables. Continue to the next file to learn more.

Solutions
You will likely find solutions to most exercises online. However, I strongly encourage
you to work on these exercises independently without searching explicitly for the exact
answers to the exercises. Understanding someone else’s solution is very different from
developing your own. Use the lecture notes and try to solve the exercises on your own.
This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the
concepts and improve your programming abilities. If you encounter difficulties, review
the lecture materials, experiment with different approaches, and don’t hesitate to ask
for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub
repository, but we will also quickly go over them in next week’s tutorial. To access the
solutions, click on the Github button on the lower right and search for the folder with
today’s lecture and tutorial. Alternatively, you can ask ChatGPT or Claude to explain
them to you. But please remember, the goal is not just to complete the exercises, but
to understand the concepts and improve your programming abilities.

Bibliography

6

	Introduction
	Section 1 - Understanding Different Types of Variables
	Exercise 1.1 - Create Variables

	Section 2 - Creating Variables in Containers
	Exercise 2.1 - Create an Array
	Exercise 2.2 - Create a Matrix of Variables

	Section 3 - Setting Bounds on Variables
	Exercise 3.1 - Set Bounds on a Variable

	Conclusion
	Solutions
	Bibliography

