
Tutorial III.III - DataFrames in Julia

Applied Optimization with Julia

Introduction
Imagine a DataFrame as a digital spreadsheet. It’s a way to organize and work with data
in rows and columns. Each column can hold different types of information, like names,
ages, or salaries. In this tutorial, we’ll learn how to create DataFrames, add and change
data, and perform simple operations on our data.

 Note

Before we start, make sure you have the DataFrames package installed. If you’re
not sure how to do this, check the previous tutorial on package management!

Let’s begin by importing the DataFrames package:

Import the DataFrames package
using DataFrames

Section 1 - Creating DataFrames
A DataFrame in Julia is akin to a table in SQL or a spreadsheet - each column can have its
own type, making it highly versatile. A DataFrame can be created using the DataFrame
constructor and passing key-value pairs where the key is the column name and the
value is an array of data. For more help, use ? in the REPL and type DataFrame. Example:

students = DataFrame(
 Name = ["Elio", "Bob", "Yola"],
 Age = [18, 25,29],
)

Exercise 1.1 - Create a DataFrame
Create and Test a DataFrame. Create a DataFrame named employees with the columns
Name, Age, and Salary, and populate it with the specified data: John is 28 years old and
earns 50000, Mike is 23 years old and earns 62000. Frank is 37 years old and earns 90000.

YOUR CODE BELOW

Test your answer
@assert employees == DataFrame(

1

 Name = ["John", "Mike", "Frank"],
 Age = [28, 23, 37],
 Salary = [50000, 62000, 90000]
)
println("DataFrame created successfully!")
println(employees)

 Tip

Remember, for more help, use ? in the REPL and type DataFrame.

Section 2 - Accessing and Modifying Data
Accessing columns in a DataFrame can be done using the dot syntax, while rows can be
accessed via indexing. Modification of data is straightforward; just assign a new value
to the desired cell. To access the column ‘name’ in our DataFrame with employees, we
could do:

employees.Name

3-element Vector{String}:
 "John"
 "Mike"
 "Frank"

To access the third name specifically, we could do:

employees.Name[3]

"Frank"

Exercise 2.1 - Access the Age Column
Access the Age column from the DataFrame and save it in a new variable ages.

YOUR CODE BELOW

Test your answer
@assert ages == [28, 23, 37]
println("Correct, the Ages column is: ", ages)

Exercise 2.2 - Update John’s Salary
Update John’s salary to 59000.

YOUR CODE BELOW

2

Test your answer
@assert employees.Salary[1] == 59000
println("Modified DataFrame: ")
println(employees)

Section 3 - Filtering Data
Logical indexing can be used to filter rows in a DataFrame based on conditions. To filter
the DataFrame to include only employees names “Frank” we could do:

allFranks = employees[employees.Name .== "Frank", :]

Alternatively, the filter function provides a powerful tool to extract subsets of data
based on a condition:

allFranks = filter(row -> row.Name == "Frank", employees)

Exercise 3.1 - Filter the DataFrame
Filter the DataFrame to include only employees with salaries above 60000. Save the
resulting employees in the DataFrame high_earners.

YOUR CODE BELOW

Test your answer
@assert nrow(high_earners) == 2
println("High earners: ")
println(high_earners)

Section 4 - Basic Data Manipulation
Julia provides functions for basic data manipulation tasks, including sorting, grouping,
and joining DataFrames. The sort function can be used to order the rows in a DataFrame
based on the values in one or more columns. To see how to use the function, type ?
into the REPL (terminal) and type sort.

Exercise 4.1 - Sort the DataFrame
Sort the DataFrame based on the Age column and save it as sorted_df.

YOUR CODE BELOW

Test your answer
@assert sorted_df.Age[1] == 23
println("DataFrame sorted by age: ")
println(sorted_df)

3

 Tip

If you have more complicated data structures, take a look at JSON files which can
be used to work with all kind of differently structured data sets.

Section 5 - Loop over DataFrames
Sometimes, you might need to iterate over the rows of a DataFrame to perform opera-
tions on each row individually. Julia provides a convenient way to do this using the
eachrow function. For example, if we want to check for each employee if they have a
salary above 60000, we can do the following:

for row in eachrow(employees)
 if row.Salary > 60000
 println("$(row.Name) earns more than 60000")
 end
end

Mike earns more than 60000
Frank earns more than 60000

Here, the row holds all the values of the row as a NamedTuple. We can access the values
of a column then by using the dot syntax. To create a new column, we can use the push!
function. For example, to create a new column called VacationDays in the employees
DataFrame, we can do one of the following:

employees.VacationDays = [0 for row in eachrow(employees)]
employees.VacationDays .= 0

3-element Vector{Int64}:
 0
 0
 0

Exercise 5.1 - Loop over DataFrame
Create a new column called Bonus in the employees DataFrame. The bonus should be
calculated as 10% of the salary for employees over 30, and 5% for those 30 and under.
Use a loop to iterate over the rows and calculate the bonus.

YOUR CODE BELOW

Test your answer
@assert filter(
 row -> row.Bonus == 2950,

4

 employees
).Name == ["John"] "John should have a bonus of 2950"
@assert filter(
 row -> row.Bonus == 3100,
 employees
).Name == ["Mike"] "Mike should have a bonus of 3100"
@assert filter(
 row -> row.Bonus == 9000,
 employees
).Name == ["Frank"] "Frank should have a bonus of 9000"
println("Great job! All the bonuses are correct!")

Section 6 - Filling a new DataFrame with values
Do you remember the push! function? We can use it to fill a new DataFrame with values.
For example, we can create a new DataFrame called WorkingHours and fill it with the
values from the employees DataFrame. Imagine that the company has a policy, where
employees above 30 work 30 hours a week, and employees under 30 work 40 hours
a week:

Create a new DataFrame
WorkingHours = DataFrame(
 Name = String[],
 Hours = Int[]
)
Loop over the rows of the employees DataFrame
for row in eachrow(employees)
 if row.Age < 30
 push!(WorkingHours, (
 Name = row.Name,
 Hours = 40
))
 else
 push!(WorkingHours, (
 Name = row.Name,
 Hours = 30
))
 end
end
println(WorkingHours)

3×2 DataFrame
 Row │ Name Hours
 │ String Int64
─────┼───────────────
 1 │ John 40
 2 │ Mike 40
 3 │ Frank 30

5

Conclusion
Fantastic work! You’ve completed the tutorial on DataFrames in Julia. You’ve seen how
to create DataFrames and access, modify and filter data. Continue to the next file to
learn more.

Solutions
You will likely find solutions to most exercises online. However, I strongly encourage
you to work on these exercises independently without searching explicitly for the exact
answers to the exercises. Understanding someone else’s solution is very different from
developing your own. Use the lecture notes and try to solve the exercises on your own.
This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the
concepts and improve your programming abilities. If you encounter difficulties, review
the lecture materials, experiment with different approaches, and don’t hesitate to ask
for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub
repository, but we will also quickly go over them in next week’s tutorial. To access the
solutions, click on the Github button on the lower right and search for the folder with
today’s lecture and tutorial. Alternatively, you can ask ChatGPT or Claude to explain
them to you. But please remember, the goal is not just to complete the exercises, but
to understand the concepts and improve your programming abilities.

Bibliography

6

	Introduction
	Section 1 - Creating DataFrames
	Exercise 1.1 - Create a DataFrame

	Section 2 - Accessing and Modifying Data
	Exercise 2.1 - Access the Age Column
	Exercise 2.2 - Update John's Salary

	Section 3 - Filtering Data
	Exercise 3.1 - Filter the DataFrame

	Section 4 - Basic Data Manipulation
	Exercise 4.1 - Sort the DataFrame

	Section 5 - Loop over DataFrames
	Exercise 5.1 - Loop over DataFrame

	Section 6 - Filling a new DataFrame with values
	Conclusion
	Solutions
	Bibliography

