
Tutorial III.I - Functions in Julia

Applied Optimization with Julia

Introduction
Imagine you have a helpful worker. Instead of explaining every little task to it each
time, you can teach it specific jobs once, and then just ask it to do those jobs later.
In programming, these “jobs” are called functions! This tutorial will show you how to
create and use functions in Julia, making your code more organized and reusable.

Follow the instructions, input your code in the designated areas, and verify your imple%
mentations with @assert statements.

Section 1 - Creating and Calling Functions
Functions in Julia encapsulate reusable code and can be defined using the function
keyword or shorthand syntax. After the keyword, you name the function and write the
parameters in parentheses. Later, you can call the function by writing the name of the
function followed by the parameters in parentheses.

Thus, think of a function like a recipe:

1. It has a name (like “say_something”)
2. It might need ingredients (our “parameters”)
3. It has steps to follow (the code inside the function)
4. It usually produces something (we call this the “return value”)

Let’s see some examples:

A simple function to greet someone
function say_hello(name)
 return "Hello, $(name)!"
end

Using our function
message = say_hello("Elio")

"Hello, Elio!"

function multiply(a,b)
 a * b
end
multiply(10, 5)

1

50

The second function takes two parameters, multiplies them, and returns the result
implicitly. In Julia, the last expression is automatically returned, making the return
keyword optional. If you explicitly use the return keyword in the function, it will return
the value immediately once the function encounters the keyword and stops the further
execution of the function. That way, you can also use the keyword in conditional state%
ments and use it to return a value based on a condition. For example:

function do_something(a,b)
 if a > b
 return a * b
 else
 return a + b
 end
end
println("The result of do_something(10, 5) is $(do_something(10, 5))")
println("The result of do_something(5, 10) is $(do_something(5, 10))")

The result of do_something(10, 5) is 50
The result of do_something(5, 10) is 15

 Tip

Functions are like teaching a robot new skills:

• The function name is like the skill name (e.g., “make_sandwich”)
• Parameters are things the robot needs to do the job (e.g., bread, filling)
• The code inside are the steps to follow
• The return value is the finished product

Exercise 1.1 - Define and Test a Simple Addition Function
Define and test a simple addition function. Define a function add that takes two para%
meters and returns their sum.

YOUR CODE BELOW

Test your answer
@assert add(10, 5) == 15 "The sum computed is $(add(10, 5)) but should be
15."
println("The sum computed is $(add(10, 5)), wonderful!")

2

Section 2 - Scope within Functions
When you create variables inside a function, they’re like secret ingredients % they only
exist inside that function’s “kitchen”. We call this “local scope”. Thus, variables declared
inside a function are local to that function and are not accessible outside.

function bake_cake()
 secret_ingredient = "vanilla extract"
 println("Adding the secret ingredient: $secret_ingredient")
end
bake_cake() # This works fine

Adding the secret ingredient: vanilla extract

But this would cause an error:
println(secret_ingredient)

If you want to access the variable outside of the function, you have to explicitly return
it. You can do this by passing return in front of the variable you want to return from
the function.

Exercise 2.1 - Return a Local Variable
Try to execute the following block of code. The objective is to understand how to
return the local_variable_one from the function scope_test. Your task is to change the
function, to return the value of local_variable_one.

YOUR CHANGES BELOW
function scope_test()
 local_variable_one = 10
 local_variable_two = 20
end
YOUR CHANGES ABOVE

Test your function
@assert scope_test() == 10 "The value exported is $(scope_test())."
println("The value exported is $(scope_test()), you solved it!")

Exercise 2.2 - Define an Implicit Return Function
Define and test an implicit return function. Define a function subtract that takes two
parameters and implicitly returns their difference. The implicit return feature makes
your code cleaner and more concise.

YOUR CODE BELOW

Test your answer
@assert subtract(10, 5) == 5 "The difference computed is $(subtract(10,

3

5)) but should be 5."
println("The difference computed is $(subtract(10, 5)), perfect!")

Section 3 - Multiple Dispatch
Multiple dispatch in Julia allows defining function behavior based on argument types,
promoting code reuse and clarity. It’s a powerful feature for designing flexible and
extensible functions. We first define a generic version and then provide specific imple%
mentations for different types:

Generic operation for objects of all types.
function operation(a, b)
 "Generic operation for objects of type $(typeof(a)) and $(typeof(b))"
end

The specific implementations are:
operation(a::Number, b::Number) = a + b # Specific method for Number
types.
operation(a::String, b::String) = string(a, b) # Specific method for String
types.

Test with different types of arguments.
result1 = operation(10, 20)
println(result1)
result2 = operation("Hello, ", "World!")
println(result2)
result3 = operation("Hello, ", 20)
println(result3)

30
Hello, World!
Generic operation for objects of type String and Int64

Exercise 3.1 - Match Results to Assertions
Match the results from the previous example to the correct assertions:

YOUR CHANGES BELOW
@assert result2 == 30 "result1 should be the sum of two numbers"
@assert result3 == "Hello, World!" "result2 should be the concatenation of
two strings"
@assert result1 == "Generic operation for objects of type String and Int64"
"result3 should use the generic operation"
println("You solved it, the assertions are now correct!")

4

 Tip

Hint: Look at the types of arguments used in each operation call and match them
to the appropriate method.

Conclusion
Great work! You’ve just completed the tutorial on functions in Julia. You now have a
first understanding of how to create, use, and understand functions in Julia. Continue
to the next file to learn more.

Solutions
You will likely find solutions to most exercises online. However, I strongly encourage
you to work on these exercises independently without searching explicitly for the exact
answers to the exercises. Understanding someone else’s solution is very different from
developing your own. Use the lecture notes and try to solve the exercises on your own.
This approach will significantly enhance your learning and problem%solving skills.

Remember, the goal is not just to complete the exercises, but to understand the
concepts and improve your programming abilities. If you encounter difficulties, review
the lecture materials, experiment with different approaches, and don’t hesitate to ask
for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub
repository, but we will also quickly go over them in next week’s tutorial. To access the
solutions, click on the Github button on the lower right and search for the folder with
today’s lecture and tutorial. Alternatively, you can ask ChatGPT or Claude to explain
them to you. But please remember, the goal is not just to complete the exercises, but
to understand the concepts and improve your programming abilities.

Bibliography

5

	Introduction
	Section 1 - Creating and Calling Functions
	Exercise 1.1 - Define and Test a Simple Addition Function

	Section 2 - Scope within Functions
	Exercise 2.1 - Return a Local Variable
	Exercise 2.2 - Define an Implicit Return Function

	Section 3 - Multiple Dispatch
	Exercise 3.1 - Match Results to Assertions

	Conclusion
	Solutions
	Bibliography

