
Tutorial VII - Periodic Library Routing

Applied Optimization with Julia

Introduction
Welcome to “FastDelivery” - a local logistics service in Hamburg! We’re working with a central
warehouse that operates a decentralized distribution network: they deliver packages directly
to smaller distribution centers in the region, ensuring efficient last-mile delivery across the
area.

The central warehouse operates a fleet of delivery vehicles that transport packages between
their main hub and 14 partner distribution centers scattered across the region. The challenge?
Designing the most efficient routing system to keep packages flowing smoothly while keeping
operational costs in check.

In this case study, we’ll help FastDelivery optimize their delivery routes using the Capacitated
Vehicle Routing Problem (CVRP) approach. We’ll consider several real-world constraints like
vehicle capacity (measured in standard shipping containers), driving distances, and opera-
tional costs to find the best possible delivery strategy.

1. Implementing the basic CVRP
Implement the CVRP from the lecture without the constraints preventing subtours and
restricting the driving time and capacities.

The demand per distribution center and the coordinates of the locations are provided as CSV
files.

The number of vehicles is 6 and each vehicle can transport up to 50 parcels to the distribution
centers. Note that capacity of each vehicle is identical.

Loading the data
First, we need to load the required packages and data files. Make sure you have the following
files in the data directory that is located in the same directory as this notebook:

• demand.csv: Contains demand per distribution center
• coord_x_y.csv: Contains location coordinates

using DelimitedFiles
using CSV
using DataFrames
using JuMP
using HiGHS
using Plots

Prepare the model data

1

file_directory = "$(@__DIR__)/data"
demand = CSV.read("$(file_directory)/demand.csv", DataFrame)
coord = CSV.read("$(file_directory)/coord_x_y.csv", DataFrame)

 Tip

Make sure that you have downloaded the data in the data folder that is located in the
same directory as this notebook.

Define the parameters
First, define the number of vehicles and the capacity as parameters. Name them vehicles
and capacity.

YOUR CODE BELOW

Test your code
@assert vehicles == 30/5 "Number of vehicles is incorrect"
@assert capacity == 100/2 "Capacity is incorrect"
println("Variables defined, great job!")

Now, we need to compute the distance matrix. You can do so by using the Euclidean distance
between the coordinates of the locations. Compute the distance matrix for all locations and
store it in a dictionary called distance. Access each location by the tuple (i,j) where i is
the origin and j is the destination. Hint: You need the distance from each location to all
other locations!

YOUR CODE BELOW

Test your code
@assert length(distance) == nrow(coord) * nrow(coord) "Distance dictionary
should have n² entries where n is the number of locations"
@assert all(v >= 0 for v in values(distance)) "All distances should be non-
negative"
@assert all(isapprox(distance[(i,j)], distance[(j,i)]) for i in
coord.location for j in coord.location if i != j) "Distances should be
symmetric"
println("Distance dictionary test passed successfully, great job!")

Define the model
Next, we create the model instance. As this is a linear problem, we can use the HiGHS solver.

Create the model instance
cvrp_model = Model(HiGHS.Optimizer)

2

set_attribute(cvrp_model, "presolve", "on")
set_attribute(cvrp_model, "time_limit", 60.0)
set_attribute(cvrp_model, "mip_rel_gap", 0.0)

Define the variables
Now you can start by defining the model variables. The variable we need first is the binary
decision variable X which indicates whether an arc from node i to node j exists. To work with
the decision variable, you will need to work with a vector of locations.

Vector of locations
println(demand.location)

String7["central", "dc_01", "dc_02", "dc_03", "dc_04", "dc_05", "dc_06",
"dc_07", "dc_08", "dc_09", "dc_10", "dc_11", "dc_12", "dc_13", "dc_14"]

 Tip

You could use the demand.location vector to define the elements of the decision variable
X.

YOUR CODE BELOW

Test your code
@assert size(X) == (15,15) "Have you defined the decision variable X?"
@assert all(is_binary(x) for x in X) "The decision variable X should be
binary"
println("Decision variable X test passed successfully, great job!")

Define the objective function
We want to minimize the total distance of the routes based on the distance dictionary distance
that you computed earlier. Create the objective function.

YOUR CODE BELOW

Test your code
obj = objective_function(cvrp_model)
@assert typeof(obj) <: GenericAffExpr "Objective should be a linear
expression"
@assert length(obj.terms) > 0 "Objective should not be empty"
println("Objective function defined successfully, great job!")
println("Note, that it is not tested whether the objective function is
correct!")

3

Define the constraints
Create the two set of constraints that ensure that each location is visited exactly once. Note
that the central location is indexed as "central"! We don’t need to consider the central
location for the constraints and we have to ensure during summing that we don’t include the
pairs where i == j.

YOUR CODE BELOW

Test your code
const_refs = all_constraints(cvrp_model,
include_variable_in_set_constraints=false)
num_constraints_in_model = length(const_refs)
expected_constraints = 2 * (nrow(demand) - 1) # indegree + outdegree for
all nodes except central
@assert num_constraints_in_model == expected_constraints "Number of
constraints is incorrect as it is $(num_constraints_in_model) instead of
$(expected_constraints)."
println("Constraints for the inflow and outflow defined, great job!")

Next, we need to restrict the ingoing and outgoing flows to the central location. Create
the two constraints that ensure that the number of vehicles arriving and leaving the central
location is equal to the number of vehicles.

YOUR CODE BELOW

Test your code
const_refs = all_constraints(cvrp_model,
include_variable_in_set_constraints=false)
num_constraints_in_model = length(const_refs)
expected_constraints = 2 * (nrow(demand) - 1) + 2 # indegree + outdegree
for all nodes except central + 2 for inflow and outflow
@assert num_constraints_in_model == expected_constraints "Number of
constraints is incorrect as it is $(num_constraints_in_model) instead of
$(expected_constraints)."
println("Constraints for the inflow and outflow defined, great job!")

Solve the model
Now, we can solve the model. This should work very fast, as the model is very simple without
any subtour elimination constraints. Solve the model as usual.

YOUR CODE BELOW

This defines a function that prints the status of the model
function print_model_status(model)
 begin
 if termination_status(model) == OPTIMAL

4

 println("Great, the solution is optimal.")
 println("The relative gap is $(relative_gap(model))")
 println("The solve time (in seconds) is $(solve_time(model))")
 elseif termination_status(model) == TIME_LIMIT && has_values(model)
 println("Solution is suboptimal due to a time limit, but a
primal solution is available")
 else
 error("The model was not solved correctly.")
 end
 println("The objective value is ", objective_value(model))
 end
end

Test your code
@assert termination_status(cvrp_model) == OPTIMAL "The model should be
optimal. Have you have any mistakes in the model formulation?"
print_model_status(cvrp_model)
println("Model solved successfully, great job!")

Plot the results
The following part extracts the results to plot the tours and requires no changes on your part.
It defines some functions that are used to plot the results.

function plot_routes(X, coord)

 Routes = [value(X[i,j]) >= 0.5 ? true : false for i in coord.location,
j in coord.location]

 fig = plot(
 size=(800, 600),
 background_color=:white,
 framestyle=:box,
 grid=false,
 dpi=300
)

 connections = findall(Routes -> !iszero(Routes), Routes .>= 0.5)

 for conn in connections
 xx = [coord[conn[1],:x]; coord[conn[2],:x]]
 yy = [coord[conn[1],:y]; coord[conn[2],:y]]
 plot!(
 fig, xx, yy,
 color=:crimson,
 label="",
 linewidth=2,
 linestyle=:solid,
 alpha=0.7
)
 end

5

 scatter!(
 fig, coord[1:1,:x], coord[1:1,:y],
 marker=:star5,
 color=:black,
 markersize=15,
 label="Central Library",
 markerstrokewidth=1
)
 scatter!(
 fig, coord[2:end,:x], coord[2:end,:y],
 marker=:circle,
 color=:steelblue,
 markersize=8,
 label="Libraries",
 markerstrokewidth=1
)

 plot!(
 fig,
 title="Delivery Routes Optimization",
 xlabel="Distance (km)",
 ylabel="Distance (km)",
 legend=:bottomright,
 legendfontsize=8,
 foreground_color_legend=nothing,
 background_color_legend=:transparent,
 margin=5Plots.mm,
 xlims=(minimum(coord.x) - 5, maximum(coord.x) + 5),
 ylims=(minimum(coord.y) - 5, maximum(coord.y) + 5)
)

 return fig
end

Plot the routes
display(plot_routes(X,coord))

2. Subtour elimination
As you see in the plot, the solution contains subtours. Thus, we need to add some constraints
from the Miller-Tucker-Zemlin (MTZ) formulation to prevent subtours. First, we need to
define the variable U which is the current capacity usage at node i.

 Tip

It might be useful to convert the demand DataFrame into a dictionary, so we can access
the demand for each location directly by the location name for the variable definition and
the constraints.

6

Create the variable U and ensure that the capacity usage at each location is between the
demand and the capacity. Note, that a dictionary might be useful here.

YOUR CODE BELOW

Test your code
demand_dict = Dict(demand.location .=> demand.demand)
@assert all(has_lower_bound(U[i]) == true for i in demand.location) "The
variable U should have a lower bound"
@assert all(has_upper_bound(U[i]) == true for i in demand.location) "The
variable U should have an upper bound"
println("Variable U defined successfully, great job!")

Next, we need to add the set of constraints to prevent subtours.

YOUR CODE BELOW

Test your code
println("Constraints for the subtour elimination defined!")
println("It is not tested whether the constraints are correct, so please
check the resulting routes in the visualization.")

Now, solve the model again.

YOUR CODE BELOW

The following code prints the model status and visualizes the routes. If your implementation
is correct, the routes should be free of subtours and the model should have reached optimality
or found a feasible solution before hitting the time limit.

print_model_status(cvrp_model)
display(plot_routes(X,coord))

The following code plots the capacity usage per vehicle.

Plot the capacity usage
function plot_capacity_usage(X, U, coord)
 # Find which locations are visited by each vehicle from central
 vehicle_routes = []
 for i in coord.location
 if value(X[i, "central"]) > 0.5
 push!(vehicle_routes, (i, value(U[i])))
 end
 end

 println(vehicle_routes)

 # Sort by capacity usage for better visualization

7

 sort!(vehicle_routes, by = x -> x[2])

 # Create bar plot
 fig = bar(
 [u[2] for u in vehicle_routes],
 title="Capacity Usage per Vehicle",
 xlabel="Vehicle",
 ylabel="Capacity Usage (parcels)",
 label="",
 color=:steelblue,
 ylims=(0, capacity),
 size=(800, 400),
 dpi=300,
 margin=5Plots.mm,
)

 # Add capacity limit line
 hline!([capacity], color=:red, linestyle=:dash, label="Capacity Limit")

 return fig
end

Create and display the plot
display(plot_capacity_usage(X, U, coord))

3. Computing the costs
FastDelivery wants to know the costs of the optimal solution. Let’s calculate the monthly
operational costs based on the following parameters:

• Cost per kilometer: 0.6 EUR (includes fuel, repairs, driver costs)
• Service frequency: Monday to Friday (5 days per week)
• Time period: 4 weeks
• Vehicle lease cost: 450 EUR per vehicle per 4 weeks

Calculate the total monthly costs and store them in monthly_costs.

YOUR CODE BELOW

Test your code
@assert isapprox(monthly_costs, 14168, atol=10) "The costs are not as
expected. But don't worry, you can still get the bonus points!"
println("Costs calculated as $(monthly_costs) EUR successfully, great
job!")

4. Optimal Solution?
Although the costs can now be computed, the tour plan has not changed so far. FastDelivery
asks you whether you have an idea of how to lower the costs associated with the parcel

8

distribution. Take a look at your current plotted solution and try to come up with an idea.
Discuss the potential shortcoming and assumptions of the current model in a few sentences.
Propose at least one idea of how to lower the costs in the future.

You can do this in a comment in the cell below.

#=

=#

5. Number of Vehicles
Together, you realize one potential area of improvement involves the number of vehicles:
it might potentially not be necessary to have 6 vehicles which deliver the parcels to the
distribution centers. You are thus tasked to find the optimal number of vehicles and the best
tour plan to minimize the costs (not the distance!).

 Tip

There are multiple ways to tackle this task, but I recommend to first think about how to
model the fixed costs for the vehicles and how to add the costs for the driving distance.
If you need to adjust the model, feel free to do so. The easiest way then would be the
definition of a new model (e.g. cvrp_model_flex) and then to copy and adjust all relevant
constraints and variables.

Implement these changes in your model and compute the optimal number of vehicles and the
best tour plan. In case the computation takes too long, no worries! If you define the model
with a time limit of 60 seconds, it should not take too long.

YOUR CODE BELOW

The code below again visualizes the results. Note, that you might need to replace the X and U
with your new models variable names, if you have renamed them.

Visualize the results
print_model_status(cvrp_model_flex)
display(plot_routes(X,coord))

Based on your results, what are the expected costs savings when compared to task b, and how
many vehicles does the central library need?

Please answer this question in the cell below.

#=

9

=#

Solutions
You will likely find solutions to most exercises online. However, I strongly encourage you to
work on these exercises independently without searching explicitly for the exact answers to
the exercises. Understanding someone else’s solution is very different from developing your
own. Use the lecture notes and try to solve the exercises on your own. This approach will
significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the concepts and
improve your programming abilities. If you encounter difficulties, review the lecture materials,
experiment with different approaches, and don’t hesitate to ask for clarification during class
discussions.

Later, you will find the solutions to these exercises online in the associated GitHub repository,
but we will also quickly go over them in next week’s tutorial. To access the solutions, click
on the Github button on the lower right and search for the folder with today’s lecture and
tutorial. Alternatively, you can ask ChatGPT or Claude to explain them to you. But please
remember, the goal is not just to complete the exercises, but to understand the concepts and
improve your programming abilities.

10

	Introduction
	1. Implementing the basic CVRP
	Loading the data
	Define the parameters
	Define the model
	Define the variables
	Define the objective function
	Define the constraints
	Solve the model
	Plot the results

	2. Subtour elimination
	3. Computing the costs
	4. Optimal Solution?
	5. Number of Vehicles
	Solutions

